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Streszczenie

Niniejsza praca dotyczy zagadnienia abstrakcji stanu (wyodrębniania stanu) - jednego z po-

wszechnie proponowanych rozwiązań problemu przekleństwa wymiarowości. Szczególny ro-

dzaj abstrakcji stanu - abstrakcja przestrzeni stanu jest analizowany jako problem selekcji zmien-

nych. Efektem tej analizy jest zapropowany w tej pracy przyrostowy algorytm abstrakcji stanu,

inspirowany pojęciami warunkowania instrumentalnego, niejednoznaczności i domknięcia z

psychologii behawioralnej. Algorytm ten poprawnie rozwiązuje problem selekcji zmiennych

poprzez dodawanie lub usuwanie pojedynczych zmiennych. Jest to pierwsze wśród istnieją-

cych rozwiązań działające nie tylko dla problemów dyskretnych, ale także ciągłych.

Abstract

This work concerns state abstraction - one of commonly proposed solutions to the curse of di-

mensionality problem. A particular type of state abstraction - state space abstraction is analyzed

as a variable selection issue. As an effect of this analysis, an incremental state abstraction algo-

rithm is introduced, inspired by the notions of stimulus discrimination, ambiguity and closure

from behavioral psychology. This algorithm correctly solves the variable selection problem by

including or removing variables one by one. It is the first among existing solutions to work not

only for discrete problems, but also continuous ones.
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Notation and Abbreviations

• x - a scalar

• x - a vector

• xi - x’s i-th element

• (x1, . . . ,xi, . . . ,xn) - a vector with given elements (all vectors are row vectors)

• X - a set or a space of measurables, with its vector elements x ∈X called measurements

or vectors of measurables

• fx - transition function

• fr - reinforcement function

• u(t) - action/control at time instant t

• x(t) - measurement at time instant t (x(t +1) = fx(x(t),u(t)))

• r(t) - reinforcement at time instant t (r(t) = fr(x(t),u(t)))

• [x] - an equivalence class of an element x

• x̂ - an abstract element, being a representative of the equivalence class [x]

• x̂ - an abstract vector, being a representative of the equivalence class of measurements [x]

• X̂ - an abstract set or an abstract space of measurables, being a set of representatives of

all equivalence classes

• φ - an abstraction mapping (an abstraction)

• ‖X‖ - X’s cardinality

• LHS, RHS - left hand side, right hand side

• x > y - a predicate that is true ⇐⇒ ∀
i∈1,...,len(x)

xi > yi (similarly for <)

• len(x) - the number of elements in the given vector x

• |x| - vector of absolute values of elements of the given vector x: |x|=(|x1|, . . . , |xi|, . . . , |xlen(x)|)
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• E - mean

• V - variance
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Chapter 1

Introduction

This dissertation is dedicated to the problem of accidental redundancy. In Computer Science,

this phenomenon occurs in such areas as industrial control systems, robotics, image processing,

sensor array data analysis, gene micro-array data analysis, medical records processing, weather

forecasting or document processing. Accidental redundancy can occur when vast amounts of

general-purpose data are automatically recorded and then reused for different specific tasks

[85]. Apart from that, accidental redundancy can stem from intricacies of the observed object.

In either case, the problem of identifying which of the attributes are redundant in the task at

hand is generally known as variable selection [43], variable subset selection [108], attribute

selection[44], state abstraction [2], [72] or feature selection [63], [80], [25] problem (as op-

posed to the feature extraction [113] problem). This issue is strongly related to the curse of

dimensionality [7]: when the number of input dimensions increases linearly, algorithm’s data,

memory and/or computational complexity grow exponentially.

Biology and psychology have often been a source of inspiration for successful Artificial

Intelligence (AI) methods, Artificial Neural Networks, in their origins, being the most notable

example. Reinforcement Learning (RL) [112] is another example of a biologically inspired

AI approach, with some success in solving complex tasks [104]. Typically, Markov Decision

Processes (MDP) [6] are used to analyze RL algorithms. In the MDP context, the given ob-

servations form a space of variables, called also the state space. Thus, the variable selection

problem consists in choosing which of the available variables are redundant. The main differ-

ence from general variable selection problems is that the input data represents a trajectory of a

discrete time stochastic control process, as opposed to time-invariant data samples.

In this work we present an algorithm that solves the variable selection problem in the MDP
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context. It is inspired by two aspects of the need for closure psychological phenomenon [48],

namely the aversion towards ambiguity and the cognitive dissonance [69], which manifest in

human behaviour [99]. We use state abstraction as the main paradigm of this work. In general,

state abstraction can be thought of like creating an alternative, in some sense simpler, space

of variables, for the same task, which in turn yields an alternative MDP, which preserves some

properties of the original MDP. Variable selection is thus a specific form of state abstraction.

In RL we are given a reinforcements mechanism in a form of a reward/penalty function

designed for the purpose of a particular RL task. Under the assumption that we have been given

a set of variables, some of them being redundant, the proposed algorithm identifies the non-

redundant ones incrementally. It starts with an empty set of variables and successively refines

the abstraction, using the introduced notion of ambiguity to find the solution to the discussed

problem. This is referred to as the bottom-up approach (as opposed to the top-down approach

- starting with all variables and removing them one by one). The subsequent refinements lead

to a minimal set of variables that is sufficient for the resulting MDP model to induce the same

behaviour in terms of the reinforcements mechanism as the given one. Such abstraction is called

model-preserving abstraction. The presented approach is designed in a way that allows easy

application to continuous domains, which is necessary to be suitable to real-world problems.

The main thesis of this work is therefore:

our ambiguity-based, bottom-up approach is a valid solution of the Reinforcement Learning

variable selection problem

This thesis is supported by the following sub-theses:

1. the problem of finding the model-preserving variable selection abstraction is an inapprox-

imable NP-hard problem

2. the proposed notion of ambiguity correctly reflects the quality of a solution of a variable

selection task

3. the proposed approach, based on the notion of ambiguity correctly solves variable selec-

tion tasks for RL, including tasks with continuous transition and reinforcement functions

To verify these sub-theses, this dissertation is organized as follows. Chapter 3 overviews the

theoretical background and the related work. It introduces the most basic notions, including
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state and state abstraction, along with the relevant notation. Also, it presents the most impor-

tant, from this work’s point of view, parts of current research. Section 4.3 of the subsequent

Chapt. 4 contains the proof of the first sub-thesis, which legitimizes devising a heuristic algo-

rithm, based on the proposed framework. Section 4.4 of this chapter introduces core notions

of this thesis, namely ambiguity and ambiguity functional. In the following Sec. 4.5 we addi-

tionally argue that starting from an empty set of variables and inserting them incrementally is

generally better than the opposite. The following Chapt. 5 presents the proposed approach in

the context of RL domains with discrete sets of states. The next chapter 6 extends this reason-

ing to continuous domains. The second sub-thesis supports the main thesis by showing that the

notion of ambiguity used in the proposed approach works as intended and it is verified experi-

mentally throughout the Chapters 5 and 6. The last sub-thesis directly supports the main claim,

by verifying the proposed approach with computer simulations in Chapt. 7. Chapter 8 presents

the conclusion, critical overview of the presented approach and indicates directions of possible

future work. Further chapter is the appendix that describes technical details of this study.

1.1 Psychological context

The main idea of this work is inspired by the notion of ambiguity. Ambiguous situations are de-

fined as situations involving uncertainty, when the probabilities of outcomes of different actions

are unknown [18]. Such situations induce the feeling of discomfort called the cognitive disso-

nance [69], [99]. This is connected with the aversion towards ambiguity, which stems from the

fact that ambiguous situations are being perceived as a source of threat [39]. This in turn makes

people motivated to reach for a closure, that is, an explanation of the ambiguous situation [48].

Additional motivation comes from the fact that such information helps in the ability to predict

the surrounding world [69]. Simple explanations are preferred over the complicated ones [95]

and they incrementally improve individual’s mental model of the surrounding world [11].

This is on the other hand closely related to the research on stimulus discrimination [102]

problem or the selective observation problem [102]. Animals, when handling simple tasks are

able to distinguish only a subset of signals, sufficient for a particular task, from the surrounding

environment. However, in more complicated tasks, when there are too many variables that

seem to be valid discriminators [102] (i.e. variables that allow to distinguish between some

two events) a problem similar to the curse of dimensionality arises. Similarly, in the context of
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variable selection, when too few data samples are presented, any variable can be chosen as a

valid discriminator. In this work we propose a method to deal with this issue in the context of

Markov Decision Processes in a way inspired by mechanisms described in this section.

The principle of the algorithm presented in this work is related to these mechanisms. At each

step, the algorithm has a list of variables that are assumed to be sufficient to model the observed

environment. When confronted with a set of transitions that contradict that, i.e. making the

surrounding world, the environment, appear nondeterministic/ambiguous, it seeks for a simple

explanation of this fact. The simplest one is to assume that one of the currently ignored signals

is in fact non-redundant.
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Chapter 2

Test environments

In this chapter we introduce test environments (also called domains, tasks or plants), which are

used throughout this work in examples and in experimental evaluation of discussed algorithms.

We start with a simple deterministic, discrete environment, namely the Discrete Labyrinth,

which illustrates presented ideas in the discrete state domain context. The next presented do-

main is a simple stochastic, discrete environment, which is used to demonstrate that even though

the algorithm presented in this work is developed in a deterministic context, it can work for

stochastic plants. Then we introduce more challenging tasks: the Continuous Labyrinth, which

is a continuous state version of the Discrete Labyrinth, and then, the Cart-Pole Swing-Up, the

Mountain Car and the Pinball - slightly more complex (in terms of nonlinearity/stochasticity)

environments.

2.1 The Discrete Labyrinth

This environment is a simple grid-world with ten rows and ten columns, where the agent’s goal

is to reach a distinguished square. The labyrinth contains one wall, over which the agent can not

pass and a target spot, which, when reached gives a positive reinforcement and ends the episode.

A graphical interpretation of this environment is presented in Fig. 2.1. Plant’s output consists of

the following integer measurables: x,y denoting agent’s horizontal and vertical position within

the labyrinth, reps., and the following functions of these measurables: s = x+y,d = |x−y|,m =

xy,qx = b
√

xc ,qy =
⌊√

y
⌋
. This results in a 9-dimensional initial space of measurables (X).

Plant’s control space consists of the following actions: U= {LEFT,UP,RIGHT,DOWN}.

The transition function fx changes agent’s coordinates to move it one square according to the
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appropriate direction denoted by action’s name with one exception: should the agent be next to

the wall (side of the labyrinth, or the wall within the labyrinth, presented in Fig. 2.1) and choose

an action that attempts to move through the wall, the action has no effect. The reinforcement

function fr gives−1 for ordinary move, −5 for attempting to cross the wall and 10 for reaching

the target square, placed at (x = 8,y = 8). Visualization of this environment is presented in Fig.

2.1.

0x
y

1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

Figure 2.1: The Discrete/Continuous Labyrinth environment. The thick line represents a wall

over which the agent can not pass, and receives −5 penalty if tries to do that. The green square

at position (X = 8,Y = 8) is the target point, giving a reinforcement with value equal to 10 end

ending an episode when reached.

2.2 The Coffee Task

The Coffee Task [9] problem is very common in RL literature, but to the knowledge of the

authors, it is not precisely defined. In general, agent’s goal is to execute a correct sequence of

steps, which lead to a robot delivering a coffee, without getting wet, if it rains. For the concrete

definition, in this work we assume what follows.

Plant’s state consists of the following binary variables: SH,SC,SR,SU,SL,SW , with the

following meaning: SH = {the user has the coffee} ; SC = {the robot has the coffee} ; SR =

{it is raining} ; SU = {the robot has the umbrella} ; SL = {the robot is in the office} ; SW =

{the robot is wet}. The boolean values of measurables are encoded as 1 for true and 0 for

false. Plant’s control space consists of the following actions: U= {GO,BUY,GIV E,TAKE}.

The transition function fx for the Coffee Task is presented in Tab. 2.1. The state is terminal
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Table 2.1: Transition function fx for the Coffee Task problem.

u(t)

x(t+1) GO BUY

SH(t +1) SH(t) SH(t)

SW (t +1)


SW (t)∨ (¬SU(t)∧SR(t)) SL(t +1) 6= SL(t)

SW (t) otherwise
SW (t)

SC(t +1) SC(t) SC(t)∨¬SL(t)

SR(t +1) true w.p. 0.5 true w.p. 0.5

SU(t +1) SU(t) SU(t)

SL(t +1) not SL(t) w.p. 0.95 SL(t)

u(t)

x(t+1) GIVE TAKE

SH(t +1)


true SH(t)

true w.p. 0.95 SL(t)∧SC(t)
SH(t)

SW (t +1) SW (t) SW (t)

SC(t +1) SC(t) SC(t)

SR(t +1) true w.p. 0.5 true w.p. 0.5

SU(t +1) SU(t)


true SU(t)

true w.p. 0.95 SL(t)

SL(t +1) SL(t) SL(t)

⇐⇒ SH.

We assume we are given four additional boolean functions of the base 6 measurables,

namely: S6 = ¬SR∨ SU ; S7 = ¬SC ∧ SL∧ SW ; S8 = SU ∨¬SL∨ SW ; S9 = SU . Thus,

plant’s output is represented by the following space of measurables X= { SH, SW , SC, SR,

SU , SL, S6, S7, S8, S9 }. It is possible in practice, that some of plant’s state variables may be

measured more than once - hence the S9 = SU duplication in this example.
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2.3 The Continuous Labyrinth

This environment is an intermediate step between discrete and continuous domains. While still

being a simple labyrinth it introduces dynamics, as agent’s actions do not modify its position

directly, but only its velocity. The labyrinth’s shape is the same as in the Discrete Labyrinth task,

with one target spot, but the agent’s and goal’s positions are a tuple of real numbers instead of

integers. Plant’s output consists of the following real valued measurables: X=
{

x,y,vx,vy
}

,

denoting agent’s position within the labyrinth and its velocity along both axes. Plant’s control

space consists of the following actions: U= {LEFT,UP,RIGHT,DOWN}. The transition

function fx changes agent’s velocity, increasing it by 0.1 in the appropriate direction denoted

by action’s name. Additionally, after each step agent’s velocities are multiplied by a factor of

0.3 and clamped to the range [−1,−1]. Similarly to the Discrete Labyrinth, when the agent hits

the wall effects of the executed action are rolled back. Additionally, agent’s velocities are set

to 0. The reinforcement function behaves in the same way as in the Discrete Labyrinth task:

fr gives −1 for ordinary move, −5 for attempting to cross the wall and 10 for reaching the

target square, placed at (x = 8,y = 8). Visualization of this environment is the same as for the

Discrete Labyrinth, and is presented in Fig. 2.1. The transition function modifies agent’s state
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as follows, assuming the agent will not hit the wall:

vx(t +1) =


vx(t)+0.1

3 u(t) = RIGHT

vx(t)−0.1
3 u(t) = LEFT

vx(t)
3 u(t) ∈ {UP,DOWN}

vy(t +1) =



vy(t)+0.1
3 u(t) = UP

vy(t)−0.1
3 u(t) = DOWN

vy(t)
3 u(t) ∈ {LEFT,RIGHT}

x(t +1) = x(t)+


vx(t)+0.1 u(t) = RIGHT

vx(t)−0.1 u(t) = LEFT

vx(t) u(t) ∈ {UP,DOWN}

y(t +1) = y(t)+


vy(t)+0.1 u(t) = UP

vy(t)−0.1 u(t) = DOWN

vy(t) u(t) ∈ {LEFT,RIGHT}

In case of hitting the wall, the transition function behaves the following way:

vx(t +1) = 0

vy(t +1) = 0

x(t +1) = x(t)

y(t +1) = y(t)

The equations above omit clamping the values to the predefined ranges, i.e. velocities to [−1,1]

and coordinates to [0,10], for simplicity.

Similarly to the Discrete Labyrinth task, the following five additional measurables are in-

troduced: s = x+y,d = |x−y|,m = xy,qx =
√

x,qy =
√

y. This results in a 9-dimensional space

of measurables (X).

2.4 The Cart-Pole Swing-Up

In this environment, introduced by Barto, Sutton and Anderson [5], agent’s goal is to balance

a pole mounted to a cart so it maintains an upright position. The Cart-Pole Swing-Up’s output
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consists of: cart’s position x ∈ [−2.4,2.4], its velocity ẋ ∈ (−∞,∞), pole’s angle θ ∈ [0,2π)

(0 when the pole points straight up) and pole’s angular velocity θ̇ ∈ (−∞,∞). The plant is

controlled by a force u ∈ U= {−5,−0.1,5,0.1}. An episode ends if |xt | > 2.4. The plant is

presented in Fig. 2.2. Assuming denotation: x for cart’s position, θ for pole’s angle, mc, mp

mc

m p

F⃗

θ

x
x

0

F⃗ g=g⃗ mp

l

Figure 2.2: The Cart-Pole Swing-Up environment. The thickest black line represents the pole

to be balanced. The horizontal line is the rail, along which the cart is moving.

for the masses of cart and pole resp., l for pole’s length, µc, µp for the cart-track and cart-pole

friction factors resp. and g for gravitational constant, the state equations for this environment

have the form [5]:

ẍ =
u+mpl

[
θ̇ 2 sinθ − θ̈ cosθ

]
−µc sgn ẋ

mc +mp

θ̈ =
gsinθ + cosθ

[
−u−mplθ̇ 2 sinθ+µc sgn ẋ

mc+mp

]
− µpθ̇

mpl

l
[

4
3 −

mp cos2 θ

mc+mp

]
This is the formulation that corresponds to the definition of this problem presented in [5]. While

we are aware of the error in the state equations ([32]), we chose to use this version as it became

common in RL related literature.

We assume that we are given the following set of measurables (with some measurables
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having the same denotation as state variables):

x = x

v = ẋ

s = sinθ

c = cosθ

a = θ̇

h = x+2ẋ

i =
√
|ẋ|

j = s+ c

k = tanθ

l = θ̇ + sc− x

This set of measurables is redundant, because five-element sets exist that form a correct solution

(e.g. (x,v,s,c,a) or (x,s, j,h, l)). This redundancy will allow to demonstrate the capabilities of

the presented algorithm. Again, assume that these are the variables initially identified by an en-

gineer as the potential state variables, with no explicit knowledge of the transition/reinforcement

functions. In particular, even though the explicit information about the pole’s angle is available

through the values of θ , we assume that we incorrectly identified it as two quantities instead:

s = sin(θ) and c = cos(θ).

To illustrate the behavior of our algorithm we test it against two versions of this environment.

The first employs a simple reinforcement function:

r(t) = cosθ(t) (2.1)

We call this version the Cart-Pole Swing-Up with a simple reinforcement function. The second,

more sophisticated version of the reinforcement function is defined as:

r(t) =


cosθ(t) if |a| ≤ 2π and |x(t)| ≤ 2.4

−1 if |a|> 2π and |x(t)| ≤ 2.4

−100 otherwise

(2.2)

We refer to this version as Cart-Pole Swing-Up with a complex reinforcement function.

2.5 The Mountain Car

The Mountain Car environment [83], [105] consists of an underpowered car on a hill. Its goal

is to use one slope to gain enough speed for reaching the goal position on the top of the other
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slope. This domain consists of the following state variables: car’s position x ∈ [−1.2,0.6] and

its velocity v ∈ [−0.07,0.07]. The agent can control the car’s acceleration with an action u ∈

{−0.001,0,0.001}. An episode ends iff x≥ 0.5. We consider two versions of this environment:

the simple Mountain Car and the stochastic Mountain Car. The state equations for the first

version of this environment have the following form:

ẋ = v

v̇ = u−0.0025cos3x

The state equations for the stochastic version are as follows:

ẋ = v

v̇ =U(−0.0005,0.0005)+u−0.0025cos3x

where U(a,b) denotes a uniform distribution in the interval [a,b].

The reinforcement function is defined as:

r(t) =

−0.1 x < 0.5

0.0 x≥ 0.5

The plant is presented in Fig. 2.3. We assume that we are given the following set of measurables

Figure 2.3: The Mountain Car environment. The yellow star represents the goal, where x = 0.5,

the agent receives the highest reinforcement, and episode ends.
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(some of them being denoted with the same name as the underlying state variable):

x = x

v = v

F3 = x+ v

F4 = |xv|

F5 = cosx

F6 = cosv

F7 = x−2v

F8 = xv

F9 = x2

F10 = v2

F11 =
√
|x|

F12 =
√
|v|

F13 = sinxcosv

F14 =
x

100

F15 =
v

100

F16 = 100x

F17 = 100v

F18 = |x|− |v|

F19 = sinx− cosv

F20 = v−2x

2.6 The Pinball

The Pinball domain [65] is similar to the Continuous Labyrinth environment, being essentially

a two-dimensional labyrinth with continuous transition function and a target spot for the agent

to reach. It is however much more complicated, because there are more, irregular, obstacles

and collisions with them are elastic, causing the agent to bounce. The plant is visualized in

Fig. 2.4. The state is represented by four variables: two-dimensional position x ∈ [0,1] and

y ∈ [0,1] and two-dimensional velocity ẋ ∈ [−1,1] and ẏ ∈ [−1,1]. There are four possible

actions, represented by two-element tuples with each element denoting agent’s influence on

ẋ and ẏ variables respectively: u ∈ {(0.2,0),(0,0.2),(−0.2,0),(0,−0.2)}. We omit the state

equations for this domain because they are very complicated, mainly due to elastic collisions.
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Its implementation is available in the dotRL platform [93] or at the web site [66] associated with

the publication it was introduced in [65].

Because in this environment there are only two, fixed starting points, away from the target

spot, it is virtually impossible for an agent that randomly selects its actions to reach it. Because

of that, we define the reinforcement function for this environment as follows, tx, ty being target

spot’s position:

r(t) =
√
(x− tx)2 +(y− ty)2

We assume that we are given the following set of measurables (with some of them being

Figure 2.4: The Pinball environment. The red circle represents the goal position, where the

agent receives the highest reinforcement and episode ends. The agent is represented by the blue

circle. Dark-gray shapes are obstacles. The picture was taken from the web site [66] associated

with the publication that introduces this environment [65].
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denoted with the same name as the underlying state variable):

x = x

y = y

vx = ẋ

vy = ẏ

F5 = xy

F6 = x+ y

F7 = ẋẏ

F8 = ẏ+ ẏ

F9 = xẋ

F10 = yẏ
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Chapter 3

State of the art in state abstraction in

Reinforcement Learning

The main idea of this work is expressed in the state abstraction paradigm. State abstraction

deals with simplifying the given space of variables (in our case: measurables). In this work, we

focus on a particular type of state abstraction, namely the state abstraction by variable selection,

applied to the Reinforcement Learning paradigm.

Reinforcement Learning is a learning framework that consists of two interacting entities,

namely an agent and an environment. The agent can influence the environment using actions

(or controls), perceives its state, and receives a reinforcement. The notions of the state and the

reinforcement are defined in Sec. 3.1 and Sec. 3.2 of this chapter. Agent’s goal is to learn

how to optimize the received reinforcements, according to some criterion, only by interacting

with the environment. The way the agent chooses its actions is called the control policy or just

policy. The optimal control policy guarantees that the agent will receive the best possible (in

the context of some optimality criterion) reinforcements. This setting is presented in Fig. 3.1.

Current research in the area of state abstraction in the RL context encompasses various

properties for grouping the vectors of measurables. One part of this research consists of methods

that aim to find a suitable state abstraction for a simple task, representing a wider group of

similar tasks, but for which an optimal control policy is already known. This is done under the

assumption that such result will be useful for learning algorithms in a context of much more

complicated, but structurally similar tasks. This approach is known as the knowledge transfer

approach [67]. The other aspect of the state abstraction research aims to determine a state

abstraction without knowing the optimal policy beforehand. This work focuses on this second
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Agent

Environment

actionstate reinforcement

Figure 3.1: The general Reinforcement Learning paradigm. An agent interacts with an environ-

ment, influencing it with actions and perceiving its state and reinforcement values.

aspect of state abstraction research.

Although our work concerns state abstraction for Markov decision processes (MDP), which

are a typical framework for analysis of the RL algorithms, the main idea can be easily seen in a

more general context, not attached to either of these frameworks. The experiments are carried

out in the RL context.

In this chapter, we start by explaining how the term state is understood in this work (Sec.

3.1). Then we present our notation and cover the definition of state abstraction in Secs. 3.2

and 3.3. Sections 3.5 and 3.4 narrow the view to a particular, special case of state abstraction,

which we wish to focus on. Finally, in Sec. 3.7 refers to current research.

3.1 State

State abstraction can be thought like a way of grouping together states that share some property.

The term state yet needs to be fixed, since it can be interpreted twofold: from the RL perspective

or from the Control Theory perspective.

The first, Reinforcement Learning perspective is based mainly on the Markov Decision

Processes (MDP) framework, in which the considered MDP model consists of state and action

spaces and transition and reinforcement distributions. Thus, the state in RL denotes values of

variables of the state space of the considered MDP model [6], [52], [97], [8]. An extension

of this framework - the Partially Observable Markov Decision Processes (POMDP) introduces

the notion of observations as potentially incomplete and indirect information about the hidden

state. In the second perspective, namely the Control Theory perspective, the state denotes a set

of values of state variables of the underlying system’s description in the state-variable form
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[60], [90], [13], [35]. In this meaning, the set of state variables is the minimum possible set

of variables that is sufficient to describe system’s behaviour (“behaviour of the system” [60],

“evolution of the system” [35]). System’s behaviour can be defined as what is perceived through

observations available to the system’s operator.

We arrange these two perspectives as follows. The general RL setting presented in Fig. 3.1

is suitable for decision problems. In our case, to consider a dynamical system control scenario,

the environment block can be split into a block representing the unknown system we wish to

control and a sensor or measurements block, which defines how can we perceive the system.

Additionally, we extend the diagram with the “abstraction selector” block that produces an

abstract representation of given measurements. The state in the RL context, i.e. the output of the

whole “Environment” block in Fig. 3.1, becomes observations or measurements in Fig. 3.2. The

underlying state consists of values of the state variables in the Control Theory sense, defined

in the previous paragraph. The vector of measurables, x is a vector that consists of values of

all given variables called measurables. For brevity, sometimes we use the term measurement

instead of saying “vector of measurables”. The set of measurables can be redundant, i.e. contain

more variables than needed to capture all the information about the underlying state, and thus

sufficient to determine system’s evolution. The role of the abstraction selector is to produce a

minimal representation that does not loose any of this information. We call the result of the

abstraction selector the abstract state. This work is thus focused on constructing the abstraction

selector block. Denotations used in Fig. 3.2 are defined in the following sections.

In general, the selection of particular state variables to mathematically describe a plant is

ambiguous - even though in practice it is intuitive [35]. This in turn makes the choice of mea-

surables ambiguous as well. The simplest solution is to define the system’s behaviour as the

values of all available measurables. The aforementioned Fig. 3.2 presents this scenario. A more

extended approach would introduce some hierarchy of the measurables, similarly to the stim-

uli hierarchy investigated in psychology (e.g. [34]). Another possibility is to define system’s

behaviour basing on a single specific observation. In such scenario this specific observation

is the only important stimulus. In Reinforcement Learning framework such signal is called

the reinforcement. In this context system’s behaviour is defined by values of the reinforcement

function, as that is the only signal which influences the quality evaluation of learning algorithms

[112]. In this work we focus on this scenario (Fig. 3.3). All examples and experiments refer

to particular measurables using their names, indicating their conceptual meaning, e.g. x - verti-
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Environment

AgentAbstraction
Selector

Dynamical 
System

underlying
     state

abstract state action
x̂ (t+1) u(t)

x (t+1)
Measurements

vector of 
measurables

Figure 3.2: The extended Reinforcement Learning paradigm. An agent interacts with an envi-

ronment that consists of an unknown system and a set of sensors. The abstraction block cre-

ates a minimal representation of measurables that contains all information about system’s state.

Agent can interact with the system with actions (u(t)) and can perceive environment’s abstract

states (x̂(t +1)). t denotes discrete time. This work is focused on the goal of implementing the

abstraction selector block.

cal position or v - velocity. In some examples, when there are many measurables that have no

particular interpretation we use the notation F� with measurable’s ordinal number for � (F is

referring either to fluent [40], or feature [53]). Measurables which are simple functions of other

measurables are denoted explicitly, e.g. x+ y.

3.2 Basic definitions

Because our work concerns only discrete time [60] systems, terms discrete and continuous are

unambiguously used throughout this work to denote quantized and continuous transition func-

tions resp. With a space of measurables X⊆Rn, a control space U⊆N the transition function

fx : X× U−→Xand reinforcement function fr : X× U−→R, we define a continuous or dis-

crete (when X⊆N), deterministic model as a tuple 〈X, U, fx, fr〉. This model is a combination

of commonly used continuous space MDPs [45], [116] and deterministic MDPs [74], which can

be easily generalized to a stochastic version. We denote the measurement vector that consists

of values of measurables at time t ∈Nby x(t) (the vector of measurables), the control applied

at time t by u(t) and the reinforcement received by r(t). In most cases however, we either con-
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vector of 
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reinforcement
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Selector

Dynamical 
System
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x̂ (t+1)
u (t)

r (t+1)

x (t+1)
Measurements

reinforcement
r (t+1)

underlying
     state

Figure 3.3: The extended Reinforcement Learning paradigm. An agent interacts with an envi-

ronment that consists of an unknown system and a set of sensors. The abstraction block creates a

minimal representation of measurables that contains all information about system’s state. Agent

can interact with the system with actions (u(t)) and can perceive environment’s abstract states

(x̂(t + 1)) and reinforcements (r(t + 1)). t denotes discrete time. This work is focused on this

paradigm and on constructing the abstraction selector block.

sider only one time instant, or two consecutive time instants, with their ordering being clear,

and thus we skip the time index (t) for brevity. The space of measurables is a space formed by

all given measurables (refer to the previous discussion in Sec. 3.1). Similarly to MDP analysis,

we assume that the space of measurables X and control space U) are known and the transition

function fx and the reinforcement function fr) are unknown. The measurables can be seen as

the output of the system [60], [62], [35]. The assumption that the measurables contain complete

information about system’s state (see Sec. 3.1) implies that the system is observable [35].

The problem considered is to find which measurables can be seen as the state variables

forming the state space of the underlying system in terms of its behaviour, assuming that the

given model has more measurables than needed. The behaviour is defined in this work as the

sequence of values of the reinforcement function fr. This quantity can be one of measurables

as well.

It is possible that the given set of measurables is insufficient to describe system’s behaviour.

However, we consider such situation an ill-posed problem and focus on the scenario when the

given measurables are sufficient and redundant. Usually, the set of measurables sufficient to

describe system’s behaviour is not unique - in such case we accept any possible solution. In the
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context of a particular solution, measurables not included in the solution are called redundant

variables [35] or redundant measurables, just redundant or simply ignored. The other ones are

called preserved.

In practice, Xcan be interpreted as engineer’s intuition on what quantities could possibly be

important, when the goal is to discover an abstract space that is the minimal space (in terms of

the number of measurables), but sufficient to describe the system’s behaviour. Any such abstract

space is called a correct solution. This goal is achieved by testing subsequent hypotheses of the

form: X̂ is a correct solution. Abstract spaces are defined in the following section.

The algorithm presented in this dissertation works by means of processing a set of sam-

ples obtained by observing how an agent interacts with a plant. A sample is defined as a tuple:

〈x̂(t),u(t), x̂(t+1),r(t+1)〉, which represents one step of agent’s interaction with a plant: i) ob-

served abstract state is x̂(t) ii) agent executes the action u(t) iii) observed abstract state changes

to x̂(t +1) iv) reinforcement value r(t) is observed.

Two cases of data sources can be considered, regarding the source of samples:

• simulated data: samples generated on demand, starting from particular points of the space

of measurables, allowing the algorithm to quickly obtain the information necessary to

calculate all required quantities

• “real” data: a random set of samples with random actions, forcing the algorithm to wait

for some particular combinations of abstract state/action to occur

The first case assumes that we have an access to a “generator” that contains a numerical model

of the plant, and allows us to generate samples on demand. This assumption is referred to as

the simulator assumption. This implies that the fx and fr are known (either in analytical or

at least numerical form, because they are somehow employed by the given simulator). This

is often not the case in practice. However, it is useful to consider it because we can quickly

verify if a particular version of the algorithm would work, if it had been given all the required

data straightaway. Note also that this assumption is sometimes possible to be met in real-life

applications. For example, in gas network control, very accurate simulators exist ([120], [106]),

but still it is hard for autonomous agents to learn to control the plant.

The “real” data case is when the algorithm can not influence what samples it gets, which

relates to a wider range of practical situations.

In Chapters 4, 6 we first evaluate the proposed ideas using the simulator assumption. Then,

in Chapt. 7 we present results with purely random sample of state transitions.
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Example 3.2.1. When analyzing a plant we start with either knowledge of its internals, or with

intuition only. For the Cart-Pole Swing-Up plant, we could infer, knowing laws of physics,

that the behaviour related to pole’s angle and movement depends on cart’s position, its velocity,

pole’s angle and pole’s angular velocity. Thus, we consider some measurables as functions of

these quantities, e.g. s = sin(θ) (θ being pole’s angle) which form the initial set of variables

that describes the X space in the factored form. The goal is to discover which subset of these

features is minimal and sufficient to make possible to learn to stabilize the pole in its up-vertical

position ( fr = cos(θ)).

�

3.3 General form of state abstraction

In this section we provide theoretical background related to state abstraction. This short intro-

duction is a basis for Secs. 3.4 and 3.5, where we define particular types of abstractions we

focus on in this work, and their properties.

To define what the state abstraction is, we first recall some basic properties of equivalence

relations [119]. Let ∼ be an equivalence relation on a S. Denote an equivalence class of an

element e ∈ Sby

[e]∼ =
{

e′ ∈ S : e∼ e′
}

(3.1)

The quotient set S/∼ is defined as a set of equivalence classes of ∼ on S:

S/∼= {[e]∼ : e ∈ S} (3.2)

These equivalence classes arrange elements of S into disjoint sets. For each of these sets we

can choose an arbitrary element as its representative. Denote by ê ∈ [e]∼ a representative of the

equivalence class [e]∼. We call each representative an abstract element, and the set:

Ŝ∼ = {ê : e ∈ S/∼} (3.3)

the abstract set. With a little abuse of notation, we also say [ê] to denote the equivalence class

of the representative ê.

The same reasoning can be applied to the space of measurables X. We form the set of

equivalence classes, X/ ∼ (the quotient set), for some equivalence relation ∼. A set of repre-

sentatives of all equivalence classes from X/∼ forms a space X̂∼ called the abstract space [3]

(the abstracted space [2], the abstraction space [2]).
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There is a link between the elements of Xand the abstract space X̂∼: each equivalence class

from Xhas a representative in X̂∼. This can be represented by a mapping defined as ([72]):

φ : X−→ X̂∼

φ(x) = x̂
(3.4)

This mapping is visualized in Fig. 3.4. Throughout this work, quotient spaces are not needed in

any derivations, so for simplicity we omit them in all figures. We identify equivalence classes

with abstract states and denote them with blue shapes that aggregate measurements directly in

the X. This simplified concept of state abstraction is presented in Fig. 3.5.

We say that the abstract space X̂∼ is implied by the abstraction function φ . The ∼ index is

usually omitted, since in the context of a particular abstraction function φ only one equivalence

relation is relevant, namely the one that defines this abstraction. Each abstract state x̂ ∈ X̂

conceptually represents one or more vectors of measurables of the original space X, where the

equivalence class [x̂]⊆X is represented by x̂ ∈ X̂.

The inverse mapping φ−1 returns a set of vectors that are represented by a given abstract

state:
φ
−1 : X̂−→ 2X

φ
−1(x̂) = [x̂]

(3.5)

Abstraction mappings can be compared by analyzing the subsets in the quotient space they

induce. For two abstraction mappings φ 1, φ 2 consider their quotient spaces, namely X/ ∼1

and X/∼2, respectively. If each subset from the quotient space X/∼1 is a contained within a

subset in quotient space X/∼2, then we say that φ 1 is finer than φ 2. Intuitively, this is because

it groups the elements into smaller (finer) sets. On the other hand, φ 2 is coarser, because its

equivalence classes contain more elements. Such situation is presented in Fig. 3.6.

We say that φ 1 is finer than φ 2, φ 1 � φ 2 if:

φ
1 � φ

2 ⇐⇒ ∀
s,r∈X

φ
1(s) = φ

1(r) =⇒ φ
2(s) = φ

2(r) (3.6)

or equivalently:

φ
1 � φ

2 ⇐⇒ ∀
x̂∈X̂1

∃
ŷ∈X̂2

[x̂]⊆ [ŷ] (3.7)

and that φ 1 is coarser than φ 2, φ 2 � φ 1 when the opposite is true. In both cases φ 1 and φ 2

are comparable. If neither φ 1 � φ 2 nor φ 2 � φ 1 then they are incomparable. The � relation

induces partial ordering of abstraction functions [72].
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X̂

ϕ

ϕ−1

X/~X

x

[x ]

ŷ[ŷ ]

Figure 3.4: Measurements (left), quotient space (middle), abstract space (right). Exemplary

arrows show relations between diagram elements: vectors from the X are mapped by the ab-

straction function φ to their representatives (purple vectors) from the abstract space, which

correspond to equivalence classes from the quotient space X/ ∼. The inverse mapping, φ−1

maps the representative to the corresponding equivalence class. The [] operation maps a vector

(x) to its equivalence class ([x]). With a little abuse of notation we also apply this operator

to representatives - in the figure the abstract vector ŷ is mapped to the equivalence class [ŷ] it

represents.

Example 3.3.1. Let us illustrate the finer notion in the context of the Cart-Pole Swing-Up

example. Consider an output that consists of the following measurables: cart’s position x and

its velocity v. Let the vectors of measurables have the form x = (x,v), so x1 = x and x2 = v.

Given two vectors, x and y, consider a relation ∼a defined as:

x∼a y ⇐⇒ sgn(x2) = sgn(y2)

and another relation ∼b:

x∼b y ⇐⇒ sgn(x2) = sgn(y2)∧ sgn(x2−0.5) = sgn(y2−0.5)

The first relation, ∼a induces an abstract space X̂a, which consists of two abstract states: x̂a

that groups measurements with nonnegative value of cart’s velocity, and ŷa aggregating mea-

surements with negative velocity. The second relation, ∼b groups measurements into three

abstract states, x̂b, ŷb, ẑb, forming an abstract state space X̂b. These abstract states aggregate

measurements with: (i) velocity greater or equal to 0.5 (ii) velocity in range [0,0.5) (iii) neg-
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X̂

ϕ

ϕ−1

X

x[x ]

ŷ
[ŷ ]

Figure 3.5: The measurements (left), and the abstract space (right). A simplified visualization of

the abstraction mapping from Fig. 3.4 without the quotient space. For simplicity, equivalence

classes from the quotient space are drawn directly in the source space X. Exemplary arrows

show relations between diagram elements: vectors from the X are mapped by the abstraction

function φ to their representatives (purple vectors) from the abstract space, which correspond

to equivalence classes. The inverse mapping, φ−1 maps the representative to the corresponding

equivalence class. The [] operation maps a vector x to its equivalence class [x]. With a little

abuse of notation we also apply this operator to representatives - in the figure the abstract vector

ŷ is mapped to the equivalence class [ŷ] it represents.

ative velocity. Further, considering abstraction functions φa : X−→ X̂a and φb : X−→ X̂b

defined as in (3.4) we have, according to (3.6):

φb � φa

�

When applying the state abstraction to dynamical systems we can consider two ways of

categorizing abstractions. One relates to the way the abstraction affects the properties of the

system, and the other to some specific way the abstraction simplifies the state space. The fol-

lowing Sec. 3.4 presents a specific category of abstractions we focus on in this work in the first

sense. Further, in Sec. 3.5 we describe specific type of abstractions we are interested in, in the

second meaning.
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ϕ1

X̂
1

ϕ 2

X̂
2

X

Figure 3.6: Two different equivalence relations on one set X that induce two abstraction map-

pings φ 1 and φ 2. For simplicity, in the bottom of the picture, we present the sets corresponding

to the equivalence classes, with their chosen representatives and denote them with the names

of sets containing only the representatives, namely X̂1 and X̂2. According to (3.6), φ 1 is finer

than φ 2. This is because the top subset on the right side of the figure covers the left and the top

subset on the left side of the figure, and the bottom sets are equal.

3.4 Model-preserving abstractions

In this section we impose additional conditions to control the way the abstractions affect the

dynamical system. We want to simplify the space of measurables as much as possible, but not

at the cost of loosing the possibility to accurately model the system’s behaviour.

Let us consider an abstraction function φ that transforms a given state space X into an

abstract state space X̂. We focus first on the simplest assumption: we do not want to loose any

information about the behaviour of the transition function fx and the reinforcement function fr.

This is equivalent of finding another model that is in a bisimulation relation [94] with the given

model. The term bisimulation comes from Automata Theory, and denotes a binary relation

between two automata that is true, if one system can emulate the other one and vice-versa in

terms of the observed output for the given input. In our context, this means that we demand that

the new model, built on the abstract space X̂ behaves in the same way as the original model,

using X. “Behaving in the same way” means that for an appropriate labeling of measurements
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of these systems they are indistinguishable. A simple example of a bisimulation relation is

presented in Fig. 3.7. This requirement can be formulated as follows:

x1

A

B C

A

D

x2

x2

x1

x2

Figure 3.7: A simple example of two models with only one possible action being in a bisimula-

tion relation. The states “C” and “D” may be different in some way, but as long as they produce

the same measurements (x2 in this case) and thus induce the same system’s behaviour, they can

be folded into one state.

∀
x,y∈X

∀
u∈U

φ(x) = φ(y) =⇒ fx(x,u) = fx(y,u) (3.8)

Model-preserving abstractions in Reinforcement Learning A similar requirement can be

reached within the Reinforcement Learning context. First, let us briefly present the most basic

version of this setting. The following reasoning applies to both discrete and continuous domains

however, for simplicity, we consider a discrete domain, with a MDP: 〈X, U, fx, fr〉. Denote with

rt+i, i = 1,2, . . . subsequent results of the reinforcement function fr when interacting with the

plant, according to a policy π that chooses an action for a given measurement: φ : X−→ U.

Then, the value function for a given measurement in the context of the policy π is defined as:

V π(x) = E
{

rt+1,γrt+2,γ
2rt+3, . . . | xt = x,π

}
(3.9)

where 0≤ γ < 1 is a discount factor [4]. An optimal value function is defined as follows:

V ∗(x) = max
u∈U

[ fr(x,u)+ γV ∗( fx(x,u))] (3.10)

The most basic Dynamic Programming[6] learning algorithm for approximating the optimal

value function at each iteration k successively improves its estimate:

Vk+1(x) = max
u∈U

[ fr(x,u)+ γVk( fx(x,u))] (3.11)
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This operation is called a backup [4] because it improves the information about the value func-

tion in the predecessor measurement x using information from the successor measurements (a

result of fx(x,u)). Results in each step depend on the outcomes of the transition and the rein-

forcement functions, fx and fr respectively. For a particular action u this pair of functions is

called the one-step model of action u [4].

Since the presented reinforcement backup behaviour of the RL learning algorithms, we

require that a valid abstraction function φ preserves information about reinforcements for all

measurements. Thus, all measurements aggregated into one abstract state must share the same

immediate and future reinforcement values for all actions:

∀
x,y∈X

∀
u∈U

φ(x) = φ(y) =⇒ fr(x,u) = fr(y,u) (3.12)

∀
x,y∈X

∀
u1,u2∈U

φ(x) = φ(y) =⇒ fr( fx(x,u1),u2) = fr( fx(y,u1),u2) (3.13)

Equality of the underlined terms is sufficient (but not necessary) for the second condition to

hold. Although demanding this equality means imposing stronger constraints than needed it

leads to a simple problem statement. Substituting the second condition by the above, stronger

constraints produces an intuitive requirement of preserving the one-step model of each action

of the environment:

∀
x,y∈X

∀
u∈U

φ(x) = φ(y) =⇒ fr(x,u) = fr(y,u) (3.14)

∀
x,y∈X

∀
u∈U

φ(x) = φ(y) =⇒ fx(x,u) = fx(y,u) (3.15)

If we treat the reinforcement function as one of the measurables, we reach a similar formula

as in (3.8), except the set of measurables is extended. Throughout this work we consider an

abstraction to be correct if it satisfies this requirement.

In Li, Walsh and Littman [72] this type of abstraction is called the φmodel abstraction.

Thought Experiment 3.4.1. Let us illustrate this particular, model-preserving, type of variable

selection state abstraction with an example of the Discrete Labyrinth environment. Introduce

the following set of measurables: x - horizontal position in the labyrinth, y - vertical position

in the labyrinth. We will show that the model-preserving abstraction function φ , which ignores

the vertical position, is not correct since it does not fulfill the conditions in (3.8). It is sufficient

to find a pair of measurements x, y represented by a single abstract state x̂, such that there exists

an action u, for which the results of transition or the corresponding reinforcement function are
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different. Such a pair of measurements is presented in Fig. 3.8, and the result of applying the

transition function can be seen in Fig. 3.9. Because the “vertical wall” between x = 2 and

0x
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Figure 3.8: A pair of measurements (red and purple points) represented by one abstract state

x̂ = (2). Action u = RIGHT means, in this environment, an attempt to move one step to the

right.

x = 3 starts at y = 1 and goes up the board, we choose the following measurements: x = (2,0)

and y = (2,1), which belong to the same abstract state, namely:

φ(x) = φ{x}((2,0)) = (2) = x̂

φ(y) = φ{x}((2,1)) = (2) = x̂

Now, for an action u = RIGHT we obtain the following:

fx(x,u) = fx((2,0),RIGHT) = (3,0) // agent moves one step to the right

fx(y,u) = fx((2,1),RIGHT) = (2,0) // agent hits the wall

Also, the reinforcement function yields different results:

fr(x,u) = fr((2,0),RIGHT) =−1 // agent moves one step to the right

fr(y,u) = fr((2,1),RIGHT) =−5 // agent hits the wall

Either of these discrepancies is enough to prove that φ is not a valid model-preserving abstrac-

tion.

�
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Figure 3.9: Results of applying the transition and reinforcement functions to the measurements

presented in Fig. 3.8. Despite being represented by a single abstract state, the red and purple

measurements produce different outcomes in terms of the successor measurement (presented in

this picture) and the received reinforcement (numbers above the measurements).

3.5 State abstraction by variable selection

In this section we describe a specific subset of abstraction functions we focus on in this work,

namely the variable selection abstractions. The variable selection problem consists of selecting

particular variables from a given set that forms the space of measurables X. In the context

of Sec. 3.3, this is a special case of state abstraction. Choosing only from a set of given

measurables, we consider only certain measurables (in general, variables or coordinates) of X,

disregarding the others (Fig. 3.10) . As mentioned in Sec. 3.2, measurables that are disregarded

by a particular abstraction are called ignored or redundant, whereas we refer to the others as to

preserved. The variable selection induces a particular type of equivalence classes (3.2), namely,

those that aggregate vectors whose all coordinates (vector elements) except the ignored ones are

identical. Constraining the abstractions in such a way makes it easy to reason about incremental

modifications of such abstractions, because we can focus on certain measurables/coordinates

instead of individual measurements. Also, it is easier to apply our ideas to continuous domains

(Chapt. 6). Although we consider only variable selection abstractions, in other figures in this

work we visualize the abstract states as arbitrary, irregular, blue shapes, as in Sec. 3.3 for clarity.

Analyzing such abstractions is convenient when referring to measurables from the given
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Figure 3.10: State abstraction by variable selection. The measurable x2 above is ignored and

x1 is preserved. Effectively, this means that all measurements with equal values of the first

element (x1) are grouped into a single equivalence class. Each of these equivalence classes has

a representative in the abstract space X̂. The representatives are abstract states, which, in this

case, have only single elements, namely values of measurable x1.

space of measurables using their ordinal numbers, called indices, taking into account the order

in which they are introduced. For example, in the Cart-Pole Swing-Up task, first five of its

measurables x,v,s,c,a have indices 0,1,2,3,4 resp. Considering sets containing these indices of

measurables, we can compactly denote sets of measurables that are preserved by an abstraction.

We call such sets the index sets. So, each abstraction when applied to a vector, produces another

vector created from the elements at indices corresponding to the measurables preserved by the

abstraction. More formally, consider the index set I⊆ {1, . . . ,n}, with m elements: ‖I‖= m.

Then, having an n-dimensional space of measurables X, we consider the following family of

abstraction functions:

φI(x) = x̂ = (xi1, . . . ,xim), i1, . . . , im ∈I (3.16)

The index set I in abstraction φI is the set of indices of measurables, and in turn indices

of vector elements, which are preserved by the abstraction (the others are ignored). Because

there are 2n possible index sets, there are 2n possible abstraction functions of this type. We

call such abstractions the variable selection abstractions (in [40] such abstractions are called
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fluentwise1). We sometimes write just φ to denote any abstraction function of this type. We

say that we insert a measurable into an abstraction to indicate that we modify the abstraction’s

index set by inserting the appropriate index. Similarly, we say that we remove a measurable

from an abstraction, when we modify its index set by removing the appropriate index.

For a n-dimensional space of measurables, X⊆Rn we call the abstraction that preserves

all the variables φ{1,...,n} the trivial abstraction. The abstraction that ignores all variables φ /0 is

called the null abstraction.

Thought Experiment 3.5.1. We will now show a simple example of a variable selection state

abstraction. Consider the Cart-Pole Swing-Up example again. Similarly to Example 3.3.1,

assume we have the following measurables: {x,v,sin(θ),cos(θ)} (where x is cart’s position, v

its velocity and θ the pole’s angle). Thus, vectors from the space formed by these measurables

will have the form x = (x,v,sin(θ),cos(θ)), so x1 = x, x2 = v, x3 = sin(θ) and x4 = cos(θ).

All possible variable selection abstractions are represented by all possible subsets of the index

set I= {1,2,3,4}. For example, an equivalence relation ignores the cart’s position (x1) and

cosine of the pole’s angle (x4) looks as follows:

x∼ y ⇐⇒ x2 = y2∧x3 = y3

and corresponds with an index set {2,3} leading to the following variable selection abstraction

function:

φ{2,3}(x) = (x2,x3)

Beside making cart’s position unknown, this abstraction also makes it impossible to tell the

measurements when the pole is pointing straight up from the measurements having it pointing

straight down apart:

φ{2,3}((x = 0.9,v = 0.2,sin(θ) = 0,cos(θ) = 1))

= φ{2,3}((x = 0.1,v = 0.2,sin(θ) = 0,cos(θ) =−1))

= (v = 0.2,sin(θ) = 0)

�
1The name fluentwise comes from the term fluent, and this is how the authors call variables
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3.6 Other types of abstractions

For completeness in this section we present briefly other types of abstractions than the one

presented in Sec. 3.4. They are not related directly to this work, however their description

provides a complete view on how abstractions can affect an MDP. They are also mentioned in

Sec. 3.7, where we present other works related to state abstraction in RL.

Recall the RL system introduced in Sec. 3.4. Related to the value function defined in (3.9)

is the action-value function, defined as:

Qπ(x,u) = E
{

rt+1,γrt+2,γ
2rt+3, . . . | xt = x,ut = u

}
(3.17)

Similarly to the value function, this function returns the expected reinforcement the agent will

receive assuming it starts from a given state and assuming its first executed action. This first

action does not have to be necessary conformable with the policy π , but the subsequent actions

do. Li, Walsh and Littman [72], besides the model-preserving abstraction define also:

• φmodel - abstractions that preserve the model

• φQπ - abstractions that preserve the action-value function (for all possible policies)

• φQ∗ - abstractions that preserve the action-value function only for the optimal policy

• φu∗ - abstractions that preserve the action-value function values only for optimal actions

• φπ∗ - abstractions that preserve the optimal actions (i.e. the fact that they have the highest

values of the action-value function)

They prove that the following holds:

φmodel � φQπ � φQ∗ � φa∗ � φπ∗ (3.18)

Because in the RL the algorithm’s quality is solely dependent on the accuracy of the estimated

value function, φQπ , φQ∗ and φu∗ are the most popular types of abstractions in the RL-related

research. φmodel abstraction, discussed in Sec. 3.4, is the only one among these that is not

attached to the RL framework and can be possibly applied in a wider context, because it does

not depend on value nor action-value functions. Also, in the context of a particular plant, φmodel

abstractions can be easily analyzed and verified by domain experts, as they preserve physical

relations between the measurables. Also, to the best knowledge of the author, there are no
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reported results for φmodel abstractions in the continuous domain. This work is thus focused on

φmodel abstractions, which are the finest abstractions. This means that they minimally simplify

the state space, but retain the most information.

3.7 Related work

Our direct inspiration comes from the work of Givan, Dean and Grieg [40] in which they apply

the bisimulation notion taken from the Finite Automata Theory to Markov Decision Processes.

The follow up research by Ferns et al. [30] and by Comanici et al. [16] apply their ideas to

MDPs with continuous transition and reinforcement functions. In Sec. 4.2 we reformulate the

underlying theory presented in [40] in the context of variable selection abstractions (see Sec.

3.5), which also enables its application in the continuous context in a simpler and more suitable

for direct practical application manner than in [30]. Because we focus only on the model-

preserving abstractions ([72]), our idea is applicable to a broader range of models. A similar

idea, also based on bisimulation, is presented by Gol et al. [41] in the context of switched linear

systems. McCallum in [77] and Seipp and Helmert in [101] introduce the incremental bottom-

up approaches to state abstraction, which is also an important paradigm in this work. Jonsson

and Barto in [57] present an algorithm which uses a given Bayesian network model to derive

φmodel abstractions for discovered options. It is an interesting idea, as it seems plausible that

domain experts should be able to provide such a model for their domain. In this work, however,

we do not assume that such model is available. Similar works aim to model the environment

with a discovered dynamic Bayesian network model. Such approaches are presented in [21],

[47] [23] and [86]. Most of these works are based on models with function providing rela-

tive effects of actions instead of transition function. Problems with using Dynamic Bayesian

Networks (DBNs) include impossibility to model synchronous arcs, and necessity to maintain

models for all, even irrelevant variables. For relative actions, DBN models must be evaluated

for all states, which seems unfeasible for large, continuous domains. The algorithm presented

by Nguyen et al. [86] is the only one, known to the authors, capable to tackle high-dimensional

domains, however only binary features are considered.

In Tables 3.1 and 3.2 we present results from these works for discrete and continuous do-

mains resp. The approach presented in this work has been included in the last row of each table

for comparison. The lack of results in the continuous state case demonstrates that this setting
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is a challenge. Current theoretical results rely on estimating the distance between probability

distributions, which is hard to implement in practice. The simplification we propose in Sec. 4.2

deals with this issue.

Table 3.1: Papers presenting the model-preserving abstraction approach for discrete domains.

Paper Year Solved task State count Tools

[40] 2003 “Expon” binary domain 512 Bisimulation

[16] 2012 Labyrinth 900 Bisimulation

[57] 2006 Coffee task 32(1) Given DBN

[21] 2006 Process planning 131072 DBN

[47] 2009 Labyrinth 121 DBN

[23] 2009 System administrator 256 DBN

[89] 2010 Taxi 500 Graph, given MAXQ

hierarchy

[86] 2013 Robot navigation 512 DBN

(real-world)

This work 2015 Labyrinth 250000 Bisimulation

(1)Even though the Coffee task consists of 6 binary measurables, its effective number of states is 32 because the

variable indicating whether the user has coffee changes its value only at the natural end of the episode.

3.7.1 Related work on other types of abstraction in RL

In this section we briefly present approaches that rely abstractions of different type than φmodel .

Tables 3.3 and 3.4 present summary of works for these paradigms, for discrete and continuous

domains, respectively. Apart from the classification presented in [72], and discussed in Sec. 3.6,

research trends concerning state abstraction in RL can be divided into two groups, namely the

state aggregation and the state space abstraction. While the state space abstraction algorithms

are special cases of state aggregation algorithms, in practice they differ significantly. This is

because the first are based on some properties relevant to the whole state space, whereas the

latter consider particular states. To the best knowledge of the author, there are no works with

practical evaluation of φmodel state space abstraction algorithms for the continuous domains.

One of aims of this work is to fill this gap.
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Table 3.2: Papers presenting the model-preserving abstraction approach for continuous do-

mains.

Paper Year Solved task Number of measurables Tools

[20] 1997 (Theory only) (Theory only) Bounded MDP

[31] 2004 (Theory only) (Theory only) Bisimulation

[30] 2011 (Theory only) (Theory only) Bisimulation

This work 2015 Cart-Pole Swing-Up, 10, 20, resp. Bisimulation

Mountain Car

The state aggregation group consists of algorithms that aggregate the states according to

some similarity measure. McCallum in [77] presents an algorithm that groups states according

to their optimal action, which conforms to φu∗ type of abstraction. More recent works [76],

[73], [114] describe the methods that group the states sharing the same values of the value func-

tion. The graph approach presented in [76] is based on detecting “frequent states”. Juang [59]

presents an interesting solution, which generates the features in a form of fuzzy-rules. Parame-

ters of these rules are trained using a genetic algorithm. Nouri and Littman in [87] propose to

use a decision tree, introducing a concept of continuous knownness of a state. Algorithms that

tackle domains with continuous transition functions are the most interesting, since they bring

RL closer to being applicable to real-world problems. Provost, Kuiper and Miikkulainen [96]

present an algorithm that performs vector quantization using Kohonen network with adaptive

structure. The vectors in network’s units are then used as a basis of an abstract state space. The

algorithm is evaluated on a high-dimensional, continuous domain which is a very promising

result. The basis function construction idea is further considered by Huang, Xu and Zuo in

[53].

Methods from the state space abstraction group aim to discover a subspace that preserves

some of the properties of the original state space. Konidaris and Barto [68] describe an algo-

rithm that chooses one of predefined sets of basis functions to form a set of options ([109]).

This algorithm presents a valuable concept of incorporating domain knowledge into abstrac-

tion algorithms in the form of predefined abstractions. The algorithm presented by Jong ([56])

attempts to determine the measurables that are irrelevant in terms of the target optimal policy.

Many approaches from this group aim to discover features, also called basis functions that can
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be linearly combined to approximate the value function. Mahadevan [75] presents a theoretical

foundation of basis function based approximation and presents an algorithm deriving a set of

basis functions to approximate the value function from environment’s transition graph. Other

works, like [89] by Osentoski and Mahadevan or [107] by Sprague present algorithms capa-

ble of automatic generation of such features. A combination of bisimulation metrics and basis

function oriented approach is presented by Comanici and Precup in [17]. Cobo et al. present

an interesting approach on incorporating domain knowledge - learning abstraction from human

demonstration.

There is also a similar research trend in the Control Theory context, namely the Model Order

Reduction methods. These techniques include, for example, Truncated Balanced Realization

[42] and Krylov Subspace methods [103]. Both methods project the original state space into a

smaller space in a way that is optimal in terms of preserving controllability and/or observability

of the plant. This somehow resembles MDP methods that aim to preserve the value function of

a model, if we look at the reinforcement as the output of the system. They are however limited

to linear systems.

Most papers employ the top-down approach that consists of reducing the abstract state space

from finer abstractions towards the coarser ones (see (3.6)). Some of them, like [77], propose

the bottom-up direction: extending the abstract state space, making it finer.

Table 3.3: Papers presenting approaches with types of abstractions different than model-

preserving in discrete transition functions.

Paper Year Abstraction type Solved task State count Tools

[77] 1995 φu∗ Spaceship docking 10 Decision tree

[75] 2005 φQ∗ Labyrinth 1260 Graph

[56] 2005
φπ∗

Taxi 500 Given π∗

[15] 2014 Frogger ∼ 10251 Decision tree, human

demonstration
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Table 3.4: Papers presenting approaches with types of abstractions different than model-

preserving in continuous transition functions.

Paper Year Abstraction Solved task Number Tools

type of measurables

[76] 2004

φQ∗

Car-Hill 2 CMAC

[59] 2005 Cart-Pole 4 Fuzzy rules

[114] 2006 Plane navigation 3 ART network

[96] 2006 Corridor navigation 180 Kohonen network

[87] 2009 Car-Hill 2 Decision tree

[73] 2010 Cart-Pole 4 Graph

[107] 2007

φQ∗

Robot navigation 121 Neighborhood component

analysis

[68] 2009 Play room 18 Bayesian information

criterion, given

basis functions
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Chapter 4

Ambiguity resolving approach

This chapter presents an introduction to the main idea, which originates from the existing works

on bisimulation in RL [40], [30], [16], [92]. We present a formal problem statement and then

introduce the ambiguity functional in its general form, which is the core notion in our frame-

work. We analyze its properties in the context of the presented problem statement. This is a

basis for the following Chapters 5 and 6, where we propose concrete definitions suitable for

discrete and continuous domains respectively.

4.1 Problem statement

Our goal is to design an algorithm that finds a valid, model-preserving, abstraction function

φI (see Sec. 3.4), in general applicable to both the discrete and the continuous settings. I

represents measurables preserved by the abstraction function we wish to find. We express this

goal as the following non-linear minimization problem. Since want to find the smallest possible

set of measurables, we minimize the number of elements in the abstraction’s index set I. The

index set I being minimized implies the abstract state space X̂= X̂I. Constraints of such

minimization consist of conditions that define a valid model-preserving abstraction defined in

(3.14) and (3.15). Expressing these conditions for the continuous case is possible in more

than one way: we can demand that almost all measurements being represented by one abstract

state satisfy the conditions, that all of them violate the condition by no more than a predefined

constant, or a combination of these two. We choose the simplest approach, namely that we

demand that all representatives of all measurements satisfy the model-preserving abstraction

conditions - this however can be easily extended to any of the aforementioned, more complex
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approaches. This gives us the following problem statement:

min ‖I‖

s.t. ∀
u∈U

∀
x̂∈X̂

∀
x,y∈[x̂]

|φI( fx(x,u))−φI( fx(y,u))| ≤ kx

∀
u∈U

∀
x̂∈X̂

∀
x,y∈[x̂]

| fr(x,u)− fr(y,u)| ≤ kr

‖I‖> 0

(4.1)

where parameters kx and kr are related to the Lipschitz continuity of transition and reinforce-

ment functions. For the discrete setting, we change the constraints to an exact equality of the

successor abstract states and reinforcements by choosing kx = kr = 0:

min ‖I‖

s.t. ∀
u∈U

∀
x̂∈X̂

∀
x,y∈[x̂]

|φI( fx(x,u))−φI( fx(y,u))| = 0

∀
u∈U

∀
x̂∈X̂

∀
x,y∈[x̂]

| fr(x,u)− fr(y,u)| = 0

‖I‖> 0

(4.2)

Note that because the choice of abstractions is restricted to the variable selection abstractions

(as described in Sec. 3.5) the problem statement is much simpler than in [30] despite dealing

with continuous transition functions. The general state abstraction problem, not restricted to

any particular type of abstractions is an NP-hard problem [64]. In Sec. 4.3 we will show that

restricting the type of state abstraction to the particular type we focus on in this work does not

change that, i.e. the state abstraction problem, restricted to the variable selection abstractions is

also an NP-hard problem. In further sections we first analyze the discrete case for the sake of

simplicity, and then extend the reasoning to the continuous case.

Thought Experiment 4.1.1. We will now present a simple example that consists in solving the

minimization problem (4.1) by hand. Consider the Continuous Labyrinth environment with the

following set of measurables: x - horizontal position in the labyrinth, y - vertical position in the

labyrinth, vx - horizontal velocity, vy - vertical velocity, x+y, |x−y|, xy. Assume kx = 0.12 and

kr = 1. We will find the solution to the minimization program (4.1). For better readability we

put names of the measurables rather than their indices in the index sets.

Consider two abstraction functions φ{x,vx,vy,|x−y|} and φ{y,vx,vy,x+y}. The first abstraction

ignores the composite measurables x+y and xy, and the vertical position y, attempting to employ
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|x− y| in their place. The second one ignores the composite features |x− y| and xy, and the

horizontal position x, with coordinate sum x+ y instead.

In the context of abstraction φ{x,vx,vy,|x−y|}, consider the following abstract state: (x= 3,vx =

0,vy = 0, |x− y| = 3). This abstract state represents, in particular, two measurements, namely:

x1 = (x = 3,y = 0,vx = 0,vy = 0, . . .) and x2 = (x = 3,y = 6,vx = 0,vy = 0, . . .). The results of

the transition function for these states given the action u = LEFT are as follows:

x1
t+1 = fx(x1,LEFT) = (x = 2.9,y = 0,vx =−0.033 . . . ,vy = 0, . . .)

x2
t+1 = fx(x2,LEFT) = (x = 3,y = 6,vx = 0,vy = 0, . . .)

In the second case, the agent hits the wall, thus its position does not change. The LHS of the

first condition in Eq. (4.1) is:

‖φ{x,vx,vy,|x−y|}(x
1
t+1)−φ{x,vx,vy,|x−y|}(x

2
t+1)‖= ‖(2.9,−0.033 . . . ,0,2.9)− (3,0,0,3)‖ ∼ 0.145

Because 0.145 > kx the first condition is not met, so abstraction φ{x,vx,vy,|x−y|} is not a valid

solution.

Note that the second abstraction does not loose any information about the environment’s

state. This can be shown by indicating a bijection between environment’s state (x,y,vx,vy) and

this abstraction’s vector of measurables: (y,vx,vy,x+ y):

g((y,vx,vy,x+ y)) = (x = x+ y− y,y = y,vx = vx,vy = vy)

Thus all LHS terms in both conditions in the minimization problem in Eq. (4.1) will be 0,

therefore this abstraction potentially is a solution to this program. Similarly, abstraction with xy

measurable instead of x+ y is a potential solution.

To verify whether it is a final solution, i.e. the one having as few measurables as possible,

all possible abstractions for which ‖I‖ = 3, ‖I‖ = 2 and ‖I‖ = 1 must be verified. First,

note that measurables vx and vy are indispensable, as they are the only measurables carrying

information about agent’s velocity. Without them, the states close to the wall would lead to

nondeterministic outcomes in terms of reinforcement (even small difference in velocity might

determine if the agent will hit the wall or not). Similar reasoning leads to the conclusion that

beside that, some information about agent’s position in the labyrinth is essential. Therefore, we

can assume that ‖I‖ > 2 and that 2 ∈ I (vx ∈ I) and 3 ∈ I (vy ∈ I). Because the labyrinth

contains both vertical and horizontal walls, it is safe to assume that only x or only y in addition
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to vx and vy will not produce a valid solution. Therefore, there are 3 abstractions left to consider,

namely: φ{vx,vy,|x−y|}, φ{vx,vy,x+y} and φ{vx,vy,xy}.

The abstraction φ{vx,vy,|x−y|} seems easiest to analyze. Since φ{x,vx,vy,|x−y|} � φ{vx,vy,|x−y|},

every pair of measurements that is aggregated by φ{x,vx,vy,|x−y|} is also aggregated by φ{vx,vy,|x−y|}.

Thus, the same pair of states that was shown to violate minimization conditions for φ{x,vx,vy,|x−y|}
above, will violate these conditions for φ{vx,vy,|x−y|}. Therefore, φ{vx,vy,|x−y|} is also an invalid

solution. It can be noted that if φ{x,vx,vy,|x−y|} is invalid and φ{vx,vy,|x−y|} looses even more

information about plant’s state then it is not against intuition that φ{vx,vy,|x−y|} is also invalid.

Let us now consider φ{vx,vy,x+y}. Similar reasoning to the one presented above for φ{x,vx,vy,|x−y|}
can be carried out for the following states x1 = (x = 2,y = 2,vx = 0,vy = 0, . . .) and x2 = (x =

3,y= 1,vx = 0,vy = 0, . . .). Both are contained within the same abstract state: φ{vx,vy,x+y}(x
1)=

φ{vx,vy,x+y}(x
2) = (vx = 0,vy = 0,x+ y = 4). The results of the transition function for these

states given action u = LEFT are as follows:

x1
t+1 = fx(x1,LEFT) = (x = 1.9,y = 2,vx =−0.033 . . . ,vy = 0, . . .)

x2
t+1 = fx(x2,LEFT) = (x = 3,y = 1,vx = 0,vy = 0, . . .)

In the second case, the agent hits the wall, thus its position does not change. The LHS of the

first condition in Eq. (4.1) is:

‖φ{vx,vy,x+y}(x
1
t+1)−φ{vx,vy,x+y}(x

2
t+1)‖= ‖(−0.033 . . . ,0,3.9)− (0,0,4)‖ ∼ 0.105

Because 0.105 < kx the first condition is met. However, the second condition, regarding the

reinforcement values, is violated, since executing the action LEFT for measurement x1 will

make the agent increase its speed and receive −1 reinforcement, and for measurement x2 will

result in hitting the wall, and thus receiving the −5 penalty:

r1
t+1 = fr(x1,LEFT) =−1

r2
t+1 = fr(x2,LEFT) =−5

The difference between these outcomes is more than the assumed tolerance:

|r1
t+1− r2

t+1|= 4 > kr

Therefore, no abstraction with ‖I‖= 3 can be a solution to the minimization problem defined

in Eq. (4.1) and the abstraction (y,vx,vy,x+ y) is a valid solution. Note that the solution is not

unique: (x,y,vx,vy), among others, is equally valid.

�
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One important conclusion from this example is that the Euclidean distance with one thresh-

old value (kx) does not always work well for our purpose. Different measurables influence the

length of the measurement vector in a different way, and thus it is impossible to find a uni-

versal kx value. In our example, we could have used a smaller value, but this in turn leads to

the algorithm being oversensitive for small differences, resulting, for example, from transition

function’s Lipschitz constant being larger than 1. The proposed modification is thus to use a

vector of thresholds, dedicated to each measurable independently, and to use the Chebyshev

distance. This idea is presented in the following sections.

4.2 Bisimulation and equivalence

In this section we describe the process of constructing a φ model-preserving abstraction (see

Sec. 3.4) by variable selection (see Sec. 3.5), basing on the derivation given in [40]. We

generalize it to a continuous case in the context of variable selection abstractions. Also, as

mentioned in Example 4.1.1 in the previous section, we introduce a vector parameter θ (x) in

place of scalar kx from (4.1).

Givan, Dean and Greig define a function H that refines an abstraction (see Eq. (3.6)). This

is achieved by disaggregating states that cause violation of the bisimulation constraints (see Eq.

(3.15)). We propose to modify this approach to focus on variable selection only. In case of

variable selection abstractions (as described in Sec. 3.5), states disaggregation consists of in-

serting a new measurable to the current model, thus forming a new higher-dimensional abstract

state space. To do this, consider a variable selection abstraction function for an index set I:

φI, as defined in Eq. (3.16). Let H : 2n −→ 2n, be a function that transforms an index set into

another index set. Similarly as in [40] we define H to split abstract states, so that measurements

grouped in these abstract states do not violate bisimulation constraints anymore. The difference

is that we split the states only by means of inserting a new measurable. In case of continuous

transition function bisimulation constraints need to be verified in terms of small distance instead

of equality. In this order we introduce two parameters: a vector θ (x) for the transition function,

and a scalar θ (r) for the reinforcement function. The function H(I) is constructed to create

a new index set by inserting indices to satisfy the model-preserving conditions defined in Eqs.

(3.14, 3.15). Thus, the indices are inserted to the index set I forming a new, refined abstraction
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φI, until the following conditions are satisfied:

¬ ∃
x̂∈X̂,u∈U

∃
x,y∈φ

−1
I (x̂)
| fr(x,u)− fr(y,u)|> θ

(r)

¬ ∃
x̂∈X̂,u∈U

∃
x,y∈φ

−1
I (x̂)
|φI( fx(x,u))−φI( fx(y,u))|> θ

(x)
(4.3)

Applying H to the subsequent abstractions removes the violations of the model-preserving con-

ditions (4.3) and in turn results in an abstraction that does not induce such violations. Such

abstraction is regarded as a valid solution to the considered variable selection state abstraction

problem. Parameters θ (x) and θ (r) correspond to parameters kx and kr from (4.1).

We now describe this modified refinement process in analogy with what is presented in [40],

to show that the process behaves in the same way, leading to the correct solution. Consider

a sequence of index sets I0,I1, . . . (accompanied by sequence of abstractions φI0,φI1, . . .)

where I0 = /0 (which is equivalent to an abstraction that aggregate all states into one abstract

state) and Ij+1 = H(Ij). Note that because H includes indices, making abstractions finer,

and thus splitting the abstract states into smaller abstract states, it follows that Ij ⊆Ij+1 and

φIj+1 � φIj (relation� is defined in (3.6)). This is a special case of the block splitting presented

by Givan and Greig in [40], yet with the difference that the blocks are split by creating a new

representation with an additional measurable. This sequence leads to an index set I being a

fixed-point of H [40], which induces a model-preserving abstraction. Denoting this abstraction

by φI we note that they constitute a quotient model [40] of the original model: 〈X̂, U, f̂x, f̂r〉

with f̂x, f̂r defined as follows:

f̂x(x̂,u) = φI( fx(x,u))

f̂r(x̂,u) = fr(x,u)

where x is an arbitrary measurement that x ∈ [x̂].

Because the resulting index set Iconstitutes a model-preserving variable selection abstrac-

tion, it satisfies the constraints of the non-linear minimization problem defined in (4.1). How-

ever, it is not necessary the global minimum. This depends on the order in which indices are

being added to I in order to satisfy conditions of (3.14) and (3.15) when calculating intermedi-

ate results of the H function, as defined in (4.3). We deal with this issue, and with the problem

of estimating θ (x) and θ (r) in Sec. 6.5.

If θ (x) and θ (r) are substituted by 0 and 0, the formulation is suitable for a discrete case.
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Thought Experiment 4.2.1. We will present an example that shows that the presented idea is

still an unsatisfactory heuristic for our problem. We will apply the incremental process pre-

sented above to find a valid abstraction functions (one being optimal, and one not) for the

Discrete Labyrinth environment, with measurables: x,y,x + y, |x− y|,xy. Similar reasoning

can be presented for the continuous version. Let us start with φI0 , with I0 = /0. φI0 ig-

nores all measurables, so its abstract state space consists of only one abstract state: x̂. Thus,

x ∈ [x̂] ,y ∈ [x̂] for every possible pair of measurements x, y. Consider x = (x = 8,y = 7, . . .)

and y = (x = 7,y = 7, . . .). Conditions from (4.3) (with θ (x) = 0 and θ (r) = 0 for the discrete

case) are violated because:

fr(x,UP) = 10

fr(y,UP) =−1

(in the first case, the agent reaches the target square in the labyrinth, for which a reward of 10 is

returned). This can be rectified by inserting the x measurable (for example) to the abstraction.

Thus, φI1 is defined by I1 = {x}. For this abstraction, similarly, another pair of states can

easily be found the violates conditions defined in (4.3), namely x = (x = 9,y = 8, . . .) and

y = (x = 9,y = 9, . . .), for action u = LEFT. Let us consider two possibilities now. If the

measurable x was chosen for the abstraction φI2 not to violate the conditions for these states, we

would reach a valid solution I2 = {x,y}, and the process would finish. However, let us consider

a more interesting scenario: note that the measurable |x− y| also makes states x and y different

from the abstraction’s point of view, and thus can be chosen at this step. Let us assume then that

I2 = {y, |x− y|}. Recall from the previous example that this abstraction is still not valid. This

can be easily verified when considering a pair of states next to the wall: x = (x = 3,y = 0, . . .)

and y = (x = 3,y = 6, . . .) for action u = LEFT. Note that φI2(x) = φI2(y) = (0,3) (because

|3− 6| = |3− 0| = 3). Therefore, these states are within one abstract state, but the action

u=LEFT results in hitting the wall when starting from one of them, and moving to the left when

starting from the other one. Therefore, one abstract state could possibly lead to two different

outcomes in terms of transition and reinforcement functions. Therefore in this scenario, the

process would have to insert another measurable, and would finish with abstraction with 3

measurables, φI3 , with I3 = {y,x+ y, |x− y|}, for example.

�

This example shows that merely inserting measurables at each step can lead to a non-optimal
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solution, because the feature |x−y| in the last result is redundant. This is related to the fact that

this problem is a NP-hard problem, as we will show in the following section. A heuristic that

addresses this issue - mechanism of removing measurables is presented in Sec. 5.5.

4.3 Hardness of the variable selection state abstraction prob-

lem

In this section we will prove that the problem presented here is NP-hard and inapproximable.

To do that, it is enough to prove two properties [70], [51]:

1. Given a solution, its correctness can be verified in polynomial time

2. Given a problem that is known to be NP-hard and inapproximable, it is possible to trans-

form it to an instance of variable selection state abstraction problem in polynomial time

The first property is trivial for the discrete case since any abstraction mapping can be verified

in linear time w.r.t. the number of possible states multiplied by the number of possible actions,

by enumerating these states and verifying conditions from (3.15). In case of continuous tran-

sition and reinforcement functions it is impossible to enumerate all possible states - however,

correctness can be verified by means of a grid search process, for any desired accuracy.

Let us now focus on the second property. First, we will present a semi-formal reasoning that

intuitively shows that it is plausible. Next, we will present a strict proof.

Recall the incremental process presented in the previous Sec. 4.2. We are inserting subse-

quent measurables to remove violations of correct state abstraction conditions (see (3.15)). In

this context, consider a problem with n measurables and thus an index set I= {1,2, . . . ,n}.

Suppose we are at step k of the process, i.e. we have added some measurables, represented

by indices i1, i2, . . . , ik ∈I, but still some abstract states violating the conditions of correct ab-

straction remain. Denote the current abstraction mapping by φk. Let us consider a set of all

correctness-violating abstract states, at step k:

V̂k =
{

x̂1
k , x̂

2
k , . . . , x̂

m
k
}

(4.4)

Recall from (3.15) that such abstract states have the following property: any two measurements

exist that are being represented by this abstract state that for the same control u produce different
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reinforcement values, or lead to different abstract states. This can be written as:

∀
x̂∈V̂

∃
x1,x2∈[x̂],u∈U

φk( fx(x1,u)) 6= φk( fx(x2,u))∨ fr(x1,u) 6= fr(x2,u) (4.5)

We say that a measurable with index i shatters an abstract state if it causes two states x1, x2 to

no longer belong to the same abstract state. Consequently, this removes one or more examples

of violation of correct abstraction properties. The ultimate goal is to get rid of all violations.

When the process is at step k, it can potentially choose among different indices of measurables:

ik+1, ik+2, . . . , in, each of them shattering different correctness-violating abstract states from V̂k.

This situation is presented in Fig. 4.1. Let as assign a subset of V̂k to each available (i.e. not

already added) index of a measurable i ∈ {ik+1, . . . , in}, denoting abstract states being shattered

by corresponding measurable. As a result, we get a set of subsets
{
V1

k ,V2
k , . . . ,Vn−k

k

}
, each

V
j

k ⊆ V̂k. To reach the correct abstraction we need to shatter all correctness-violating abstract

states. To find an optimal solution, we additionally require to achieve that with the least possible

number of measurables. In terms of V̂k and its subsets, we wish to find the least number of

subsets V
j

k ⊆ V̂k that cover the whole V̂k. This is clearly an instance of a well known NP-hard

problem, namely the set cover problem [61]. Also, the set cover problem is inapproximable, and

the greedy algorithm is the best possible approach, as shown by Feige in [29]. We have shown

that any step from the incremental abstraction refinement process, described in the previous Sec.

4.2, can be formulated in terms of the set cover problem. However, to prove that the variable

selection state abstraction problem is NP-hard we need to show the converse: that any instance

of the set cover problem can be transformed into a variable selection state abstraction problem

(in at most polynomial time). The reasoning is as follows:

Theorem 4.3.1. The problem of finding a model-preserving variable selection abstraction is an

inapproximable NP-hard problem.

Proof. Consider an instance of the set cover problem: for a set C= {1,2, ...,N} of N elements,

and a family of its M subsets S=
{
Sj : Sj ⊆ C,1≤ j ≤M

}
. Assume that

⋃
j
Sj = C, i.e. a

solution exists. We will now construct a Markov Decision Process, corresponding to this in-

stance. Denote with x̂l an abstract state corresponding with element l ∈ C. We can encode

such abstract states for all elements from Cwith m = dlog2 Ne binary measurables: i1, i2, . . . , im

(each il ∈ {0,1}). To focus on the simplest possible case for this constructed MDP, it is enough

to have a single possible action U= {u} and a simple transition function fx(x,u) = x. Now, we

would like to design a reinforcement function in such a way that abstract states x̂l violate the
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V̂k :
x̂k
1 x̂k

2 x̂k
m

...

+ik+1 +ik+2 +ik+3

x̂1'

x̂1''

+ik+1

x̂2'
x̂2''

x̂2'''

x̂m'

x̂m''

+ik+2 +ik+3

x̂m' x̂m''

x̂1'

x̂1''

x̂1'

x̂1''

...

Figure 4.1: The top row represents V̂k: the set of ambiguous abstract states (indicated by red un-

derlying states, which produce different measurements - arrows leading in different directions).

Straight arrows pointing downward present possible measurables (indices of measurables) that

shatter the abstract states. Shattering an abstract state forms some smaller abstract states, each

of them being less ambiguous than the initial one. Depending on which index/measurable will

be chosen, abstract states will be shattered differently.

constraints of the correct abstraction, and that subsets Sj correspond to additional measurables

that shatter these abstract states. For each set cover problem subset S1,S2, . . . ,SM we introduce

additional, corresponding measurables: im+1, im+2, . . . , im+M. If a subset Sj contains an element

l we require that the additional measurable i j,m < j ≤ M shatters the abstract state x̂l . This

can be easily achieved by making the fr depend on measurable i j iff l ∈ Sj, other measurables

being irrelevant, when the current state is represented by x̂l . Thus, fr can be defined as:

∀
x̂l :l∈C

∀
Sj:l∈S j

∀
x∈[x̂l ]

fr(x,u) =

−1 i j = 0

−2 i j = 1
(4.6)

This defines fr for all possible states, because of the assumption that the problem is solvable.

Note that fr is well-defined, because considering all elements l from Cdetermines considering

all possible abstract states x̂l , and for each such abstract state, we define the reinforcement
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function for every possible underlying state x ∈ [x̂].

We have thus defined a MDP: 〈X, U, fx, fr〉, with the space of measurables X defined in a

factored form: i1× i2× . . .× im+M, and action set U, transition function fx and reinforcement

function fr as above. After m steps of incremental abstraction refinement process we reach an

incorrect abstraction mapping, φm, defined by the index set Im = {i1, i2, . . . , im} (i.e. the abstrac-

tion ignores measurables im+1, . . . , im+M). The problem of further refinement of this abstraction

is a result of transformation of the initial set cover problem instance. This transformation is lin-

ear in terms of number of elements N, and number of subsets M, each multiplied by the number

of its elements. This gives complexity smaller than O(N +MN). This proves that the variable

selection state abstraction problem is NP-hard. This also additionally implies that the decision

version of this problem (e.g. deciding whether a correct abstraction mapping exist with at most

k measurables) is NP-complete [61].

This proves the first sub-thesis of this work, namely that:

the problem of finding the model-preserving variable selection abstraction is an

inapproximable NP-hard problem.

4.4 Ambiguity functional

In this section we define a functional that allows to qualify to which extent the model-preserving

abstraction (Sec. 3.5) constraints are violated (see (3.15)) by a given abstraction function.

Our goal is to define a functional that allows to compare abstractions in a way suitable for

practical application, in particular in continuous domains. The authors of [40] use the term un-

stable partition to describe the abstract states (partitions) that violate the bisimulation principle.

An equivalent notion of not preserving environment’s model is used in [72]. In these terms,

unstable partitions are abstract states that violate the constraints of the model-preserving ab-

stractions. Similarly to [31], we propose to measure how much these constraints are disturbed.

To achieve this, we introduce the ambiguity functional. Unlike metrics defined in [30] and [16],

we consider deterministic systems only, so there is no need to estimate the distance between

probability distributions. Despite this simplification, it is still possible for our approach to work

in the nondeterministic case, as we demonstrate in the additional experimental evaluation in Sec

7.2.
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Psychological context The intuition behind the ambiguity functional we are about to propose

is to relate it to the way animals judge the quality of their internal model of the surrounding

world. The more often unpredictable situations occur, the less accurate the model is. In case

of the proposed algorithm, the more the constraints of model-preserving abstraction are being

violated, the more information about system’s behaviour is lost. In psychology such situation

makes animals strive to obtain closure, i.e. an explanation of the ambiguous situation [48]. In

case of the proposed algorithm, such explanation is obtained in the form of including a missing

measurable in the abstraction, which makes the surrounding world less unpredictable. �

The definition of the ambiguity functional is based on the definition of model-preserving

abstraction in (3.15), and is related to the problem statement in (4.2). The intent is to measure

to which extent the plant is behaving in an nondeterministic way, in the context of a given,

particular abstraction. The term behave refers to the transition and reinforcement functions

( fx, fr), which, for a given control ut , map a measurement xt to the next measurement xt+1

and the reinforcement value rt+1 ∈ R. Consider a situation where an abstract state groups

together measurements that result in a different outcome for a particular action. When the sys-

tem reaches these states, they appear equal - because the abstraction maps them to a single

abstract state. Thus the system will appear to be indeterministic, because after applying the

same action, it will reach different abstract states and/or emit different reinforcements. This

will happen if the abstraction ignores a non-redundant measurable that determines the outcome

of the transition function and/or the reinforcement function. We say that an abstract state ex-

hibiting such behaviour is ambiguous. In other words, when the plant is in an abstract state x̂,

it can be in any of the states x1 ∈ [x̂] ,x2 ∈ [x̂] , . . ., which can have different successors for the

same action. The more different abstract states and reinforcement values can be reached via the

transition/reinforcement functions from an ambiguous abstract state, the more ambiguous it is.

This is visualized in Fig. 4.2. We require that the ambiguity functional, we are going the define,

has the following properties:

Properties 1.

1. Abstractions that yield abstract states that are more ambiguous should determine larger

value of the ambiguity functional.

2. The ambiguity functional must yield its lowest possible value for model-preserving ab-

stractions.
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2 xt+1
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Figure 4.2: An ambiguous abstract state x̂1. When the plant is in an underlying state that

produces measurements being represented by this abstract state, it can be, in fact, in any of

the underlying states that produce measurements: x1
t ,x2

t ,x3
t ,x4

t . In the next step, the transition

function fx transforms one of them into one of next underlying states, producing one of mea-

surements: x1
t+1,x

2
t+1,x

3
t+1,x

4
t+1. If they all would have been represented by a single abstract

state the abstraction would be a correct model-preserving abstraction. In this case it is not -

because of x2 the model behaves nondeterministically - being in x̂1
t it sometimes goes to x̂2

t+1,

and sometimes to x̂3
t+1. The same reasoning applies to the reinforcement function fr.

3. Given two abstractions φI and φK with index sets that differ by one variable the ambigu-

ity functional must yield lower value for the abstraction with the larger index set. Thus,

the following must hold:

‖I\K‖= 1 =⇒ A(φI)≤ A(φK) (4.7)

These properties guarantee that the correct abstraction, if it exists, will be found.

Theorem 4.4.1. The incremental process presented in Sec. 4.2 based on the ambiguity func-

tional (4.10) that has the properties (1) always finds a model-preserving variable selection ab-

straction, if such abstraction exists.

Proof. Denote with Ij an index set with j indices and consider a state abstraction problem

with n given measurables. Note that, φI0 = φ /0 denotes the null abstraction and φIn denotes

the trivial abstraction (both defined in Sec. 3.5). Let us assume that φIn (all measurables,

so no abstraction at all) preserves the model, and that φI1 for one particular set I1 does not

preserve model. Assume that the ambiguity functional can be 0 at minimum. This means that

A(φI1)> 0. Then, including measurables into the index set one by one, will induce subsequent
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abstractions, φI2,φI3, . . .. Because these measurements are being grouped into abstract states

only as a result of some measurables being ignored by the abstraction mapping, the sequence of

values of the ambiguity functional for the considered sequence of index sets will be decreasing,

namely:

A(φI1)≥ A(φI2)≥ . . .≥ A(φIn) (4.8)

Therefore, either for some index set Ii, A(φIi) = 0,Ii 6= In, so φIi will preserve the model

or all measurables will be eventually included, and the abstraction φIn preserves the model by

assumption. Thus, such process guarantees that a model-preserving abstraction will be reached,

exactly in the same way as in the reasoning presented in Sec. 4.2. Note that also as in reasoning

presented in Sec. 4.2 this does not guarantee that the result will be optimal in terms of the size

of its index set I.

Now we will propose a definition of the ambiguity functional in a general form that meets

these requirements.

To calculate the value of the ambiguity functional for an abstraction function we choose

to take into account the most ambiguous state, i.e. the resulting quantity will be a result of

maximization over all abstract states and all possible actions (controls): max
x̂∈X̂,u∈U

. Given a

particular abstract state x̂ we must examine all measurements aggregated by this abstract state:

x ∈ x̂ to get all possible outcomes of the transition function fx and the reinforcement function

fr. Thus, for a given abstraction mapping φ , when considering a particular abstract state x̂, we

must iterate over all elements of the inverse mapping: φ−1(x̂) (recall from (3.5) that the result

of φ−1 is a set: [x̂]). Figure 4.3 presents a graphical representation of this process, taking into

account only the transition function fx. For the reinforcement function fr the bottom part of the

diagram would contain only points representing different real numbers (reinforcement values).

For convenience, let us introduce the following symbol that given a measurement vector and a

reinforcement value pair, produces a pair of abstract state for the given measurement and the

unaffected value of the given reinforcement:

¯̄
φ(x,r) = (φ(x),r) (4.9)

Then, the abstraction ambiguity functional can be defined as follows, summarizing the descrip-

tion presented above:

A(φ) = max
x̂∈X̂,u∈U

Λ(
{

¯̄
φ( fx(x,u), fr(x,u)) : x ∈ [x̂]

}
) (4.10)
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X̂

ϕ-1

t

t+1

ϕ

f x

A(ϕ)

X

Figure 4.3: The general concept of calculating the ambiguity functional for a given abstraction

function φ . The left side of the picture represents the abstract space X̂ induced by the abstrac-

tion function φ . The corresponding view of the X space is presented at the right side. Points

represent vectors: abstract states on the left side, measurements on the right side. Blue shapes

represent groups of measurements belonging to the same equivalence class, i.e. the same ab-

stract state. The top of the picture presents the measurements at time t, before applying the

transition function fx. The bottom represents the time instant t +1, i.e. after fx was applied.

The concrete definition of the Λ function depends on whether we are dealing with discrete

or continuous transition and reinforcement functions. Its purpose is to evaluate all possible

outcomes of the transition and reinforcement functions, for all measurements represented by

one abstract state. For the properties of the ambiguity functional (1) to hold, the Λ function is

required to satisfy the following:

Properties 2.

1. Abstract states that are more ambiguous should determine larger value of the Λ function.

2. Unambiguous abstract states should yield the lowest possible value of the Λ function.
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These properties of the Λ function ensure that properties formulated for the ambiguity func-

tional in (1) will be satisfied.

Theorem 4.4.2. The properties (2) of the Λ function ensure that the ambiguity functional (4.10)

has the properties (1).

Proof. The first property from (2) ensures directly that the first property from (1) is satisfied.

Because model-preserving abstractions yield only unambiguous abstract states, the second

property from 2 also makes the second property from (1) satisfied.

The first property from (2) also ensures that the third property from (1) is satisfied. This can

be proven by contradiction. Let us assume we are given a Λ function that has properties defined

in (2), two abstraction functions φI, φK, where ‖I\K‖= 1, and that A(φI)> A(φK), i.e. the

third condition from (1) is false. The reasoning leading to a contradiction is as follows.

A(φI) > A(φK) implies that there exists an abstract state produced by abstraction φI that

is more ambiguous (i.e. transition and reinforcement functions transform it at time t, to a

larger number of different abstract states at time t + 1) than any other abstract state produced

by abstraction φK. Let us call this abstract state x̂. This abstract state represents an equivalence

class of measurements that have equal values of measurables indicated by indices from the

set I. Because of the assumption that ‖I\K‖ = 1 the index set K has one index less than

I. This imposes more relaxed condition on aggregation of the same measurements that are

represented by x̂, because lesser number of measurables need to be equal to be aggregated into

one equivalence class. This in turn implies that there exists an abstract state, ŷ yielded by φK

that represents no less measurables than x̂. Thus, it is at least as much ambiguous as x̂. Because

of the maximization term in (4.10) this implies that A(φK) can not be less than A(φI, which

contradicts the assumption that A(φI)> A(φK).

In Chapters 5 and 6 we propose concrete definitions of the Λ function, which satisfy prop-

erties (2) and are suitable for discrete and continuous domains respectively.

4.5 Incremental state abstraction paradigms

Before we introduce concrete definitions of the ambiguity functional, let us analyze in general,

possible approaches to the incremental state abstraction problem. In this section we argue that

the process presented in the previous Sec. 4.2, going from coarser abstractions towards finer
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ones is in general better than the opposite approach, which would start with no abstraction at all,

and would successively remove measurables. We call the first approach the bottom-up approach,

and the second one the top-down approach. We also analyze a binary-search paradigm, an idea

based on the fact the the ambiguity functional is monotonous with regard to the number of

variables preserved by a given abstraction.

Psychological context The idea of preferring the bottom-up approach to the top-down ap-

proach is also related to the hypothesis that people learn incrementally, successively improving

their mental model of the surrounding world, basing on the knowledge they currently have [11].

Also, simpler models are preferred over the complicated ones [95]. �

We assume that the given model contains redundant measurables. As mentioned above, the

bottom-up approach starts with an assumption that no measurables are needed to describe the

system’s behaviour (see Chapt. 3). If this assumption turns out false, one measurable is added

and the process is repeated. We discuss how to verify such assumptions and how to choose

measurables to insert in the following sections of this chapter. The other one, the top-down

approach, starts with an assumption that all measurables are relevant and then verifies if any of

them can be abandoned. In the following sections we also show a way of verifying whether a

measurable is redundant.

We argue that the bottom-up approach is better, in general, in terms of processing time. We

say in general, because the calculations presented in this section assume evaluating all possible

abstractions with given number of measurables, which is not the case in practice. However, the

reasoning presented here gives some intuition and insight on what the difference between the

bottom-up and top-down approaches is.

Let us denote with n the number of measurables in the given model and the number of

measurables in the smallest sufficient set of measurables with m (1 ≤ m ≤ n). Let us assume

that the time complexity of verifying whether the set of measurables is sufficient or that contains

redundant measurables is exponential: O(ei) with i being the number of measurables. Then, the

time complexity of the bottom-up approach is:

BottomUp(n,m) =
m

∑
i=1

(
n
i

)
exp(i) (4.11)

And the time complexity for the top-down approach is:

TopDown(n,m) =
n

∑
i=m

(
n
i

)
exp(i) (4.12)
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Let us assume that for each n, all cases (i.e. number of measurables in the solution - m) are

equally probable. Then, using Eqs. (4.11) and 4.12 average processing time for all possible

cases can be estimated as:

BottomUp(n) =

m=n
∑

m=1
(BottomUp(n,m))

n
(4.13)

for the bottom-up approach and analogously:

TopDown(n) =

m=n
∑

m=1
(TopDown(n,m))

n
(4.14)

for the top-down approach.

Solution of (4.13) is as follows:

BottomUp(n) =

i=n
∑

i=1
(n− i+1)

(n
i

)
exp(i)

n
=

n(1+ e)n−1 +(1+ e)n− (n+1)
n

(4.15)

And the solution of (4.14):

TopDown(n) =

i=n
∑

i=1
i
(n

i

)
exp(i)

n
=

e(1+ e)n−1n
n

(4.16)

To verify which approach is more time consuming on average consider a function:

f (n) =
TopDown(n)
BottomU p(n)

=
e(1+ e)n−1n

n(1+ e)n−1 +(1+ e)n− (n+1)
(4.17)

Figure 4.4 presents a plot of this function for n = 1, . . . ,500. It is strictly above 1 for n > 1, has

no roots and its limit as n approaches infinity is also greater than 1:

lim
n→∞

f (n) = e (4.18)

This proves that the bottom-down approach is on average better than top-down. Suppose now

we happen to have some domain knowledge about the problem being solved, and can suspect

that the solution is likely to contain most of the given measurables (i.e. m≥ n
2 ). Then, the same

reasoning can be applied. The bottom-up approach starts with all possible combinations of n
2

measurables and incrementally includes measurables up to n, and the top-down approach starts

as before from n measurables and attempts to remove measurables, but no more than n
2 . In this

case, the equations will take the following form:

BottomUp(n,m) =

n
∑

i= n
2

i
(n

i

)
exp(i)

n
(4.19)
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Figure 4.4: Comparison of the estimated computational complexity of bottom-up and top-down

incremental approaches to the state abstraction problem. The complexity ratio is greater than 1,

which suggests that in general the bottom-up approach is better.

TopDown(n,m) =

n
∑

i= n
2

(i− n
2 +1)

(n
i

)
exp(i)

n
(4.20)

Also, consider an opposite case: we happen to know that the solution contains no more than n
2

measurables. Then, the equations for the bottom-up and top-down will look as follows:

BottomUp(n) =

n
2
∑

i=1
(n

2 − i+1)
(n

i

)
exp(i)

n
(4.21)

TopDown(n) =

n
2
∑

i=1
i
(n

i

)
exp(i)

n
(4.22)

Solutions of these four equations involve hyper-geometric functions and thus are hard to ana-

lyze. However, they can be calculated numerically. Plots presented in Fig. 4.5 and Fig. 4.6

suggest that the top-down approach is better under the assumption that the solution contains at

least n
2 measurables, and that bottom-up is better under the assumption solution that the solu-

tion contains no more than n
2 . In this work we make no assumptions regarding the number of

measurables in the solution, and therefore we focus on the bottom-up paradigm. However, the

presented approach can be used in both ways. Another possible order of evaluating abstrac-

tions can be based on the monotonicity property of the ambiguity functional, presented in (4.7).
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Figure 4.5: Comparison of the estimated time complexity of bottom-up and top-down incre-

mental approaches to the state abstraction problem under the assumption that the solution has

no more than n
2 measurables. Similarly as in Fig. 4.4, the bottom-up approach is better in terms

of computational complexity.

Denote with φn a set of state abstractions defined by all possible index sets of cardinality n. If

there is an abstraction φn ∈ φn for which A(φn) = 0, then by (4.7), it means that the optimal

solution has at most n measurables. If on the other hand all abstractions in φn have ambiguity

functional greater than 0 then the optimal solution has more than n measurables. Sets φn for

all possible numbers of measurables can be thus ordered by the value: min
φn

A(φn). Because

there exist a total ordering of this set, we can perform a binary search to identify the number

of measurables in the optimal solution, and the solution itself. For a problem with n possible

measurables the process starts with n
2 measurables and calculates the ambiguity functional for

all
(n

n
2

)
possible abstractions. If at least one yields 0, the process continues, recurring for n

4

measurables. Otherwise, all abstractions with 3n
4 are verified, and so on. This search process is

presented in Fig. 4.7. Each tree node represents a decision point, in which all abstraction with

number of measurables indicated with the number inside the node are being evaluated. If any

of them yields the value of the ambiguity functional equal to 0 the left sub-node is chosen for

the next step. Otherwise, if all abstractions have ambiguity functional greater than 0 the path to

the right is taken.

Similarly to the reasoning from Sec. 4.5 let us try to estimate the computational complexity

of such process. As before, assume that the cost of evaluating an abstraction mapping with k
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Figure 4.6: Comparison of the estimated time complexity of bottom-up and top-down incre-

mental approaches to the state abstraction problem under the assumption that the solution has

no less than n
2 measurables. In this case, as opposed to the previous comparisons presented in

Figs. 4.4, 4.5, the top-down approach is better in terms of computational complexity.

measurables is O(ek) and that all solutions are equally probable. On each level i of the search

tree the number of possible nodes is 2i−1. The number of measurables in each subsequent node,

looking from left to right on each level is: (2 j−1)n
2i , where j is the ordinal number of the node,

1≤ j≤ 2i−1. For k measurables, there are
(n

k

)
possible variable selection state abstractions, each

with evaluation cost of order ek. For convenience denote by k(i, j) the number of measurables

in j-th node on i-th level, i.e. k(i, j) = (2 j−1)n
2i . Thus, we can estimate the average complexity

of evaluating abstractions on level i:

2i−1

∑
j=1

( n
k(i, j)

)
exp(k(i, j))

2i−1 (4.23)

Because the binary search tree for n elements has height of log2(n) the equation for average

complexity of the whole process is straightforward:

Bin(n) =
log2(n)

∑
i=1

2i−1

∑
j=1

( n
k(i, j)

)
exp(k(i, j))

2i−1 (4.24)

We compare numerically this paradigm with the bottom-up paradigm evaluated in Sec. 4.5. To

do this, we plot the following function, for the number of measurables n = 1, . . . ,500:

f (n) =
BottomU p(n)

Bin(n)
(4.25)
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Figure 4.7: A binary search tree, illustrating the binary-search approach to the incremental

abstraction problem, for a n-variable system. Numbers in nodes denote the number of mea-

surables in the evaluated abstractions. A > 0 figuratively denotes that all abstractions have the

value of the ambiguity functional greater than 0. A = 0 indicates the scenario where at least one

abstraction is correct, i.e. its ambiguity functional is 0.

where the BottomU p(n) function was defined in Sec. 4.5. The result of this evaluation is

presented in Fig. 4.8. In can be seen that for large number of measurables the binary-search

approach should on average be faster. The Fig. 4.9 presents the same graph focused on the

area with fewer measurables. It can be seen that when there are no more than 20 measurables

the approaches are comparable. In Fig. 4.10 and the Fig. 4.11 we present graphs under the

assumption that the solution contains at least n
2 measurables and at most n

2 measurables resp. To

obtain the formula for the first of these cases, we need to omit the first level from the outer sum,

and include only the right part of the search tree in the inner sum. The formula for the average

complexity in the first case is thus as follows:

Bin(n) =
log2(n)

∑
i=2

2i−1

∑
j=2i−2+1

( n
k(i, j)

)
exp(k(i, j))

2i−2 (4.26)

Similarly, for the second case. We omit the first level of the tree, and sum only the nodes from
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Figure 4.8: Comparison of the estimated time complexity of bottom-up and binary-search ap-

proaches to the state abstraction problem. In general the binary-search approach has lower

complexity. A more detailed view for the part of the graph when the comparison is not clear is

presented in Fig. 4.9.

the left sub-tree:

Bin(n) =
log2(n)

∑
i=2

2i−2

∑
j=1

( n
k(i, j)

)
exp(k(i, j))

2i−2 (4.27)

In both cases the binary-search approach is better. Because we do not assume any additional

knowledge about the solution, and deal with problems with the number of measurables less

than 20, we focus on the bottom-up approach. Also, as explained in the following sections, the

one-step incremental approaches give possibility to make mistakes when estimating the value

of the ambiguity functional. In case of the binary-search approach, exact values must be known

at each step.
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Figure 4.9: Comparison of the estimated time complexity of bottom-up and binary-search ap-

proaches to the state abstraction problem for no more than 60 measurables. For single problem

instances the bottom-up approach yields lower complexity, but most of the time the binary-

search approach is better.

Figure 4.10: Comparison of the estimated time complexity of bottom-up and binary-search

approaches to the state abstraction problem under the assumption that the solution has no less

than n
2 measurables. As in previous cases, the binary-search approach has better complexity.
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Figure 4.11: Comparison of the estimated time complexity of bottom-up and binary-search

approaches to the state abstraction problem under the assumption that the solution has no more

than n
2 measurables. As in previous cases, the binary-search approach has better complexity.

75



Chapter 5

Ambiguity resolving approach for discrete

domains

In this chapter we propose a concrete definition of the ambiguity functional for discrete tran-

sition and reinforcement functional, and present a state abstraction algorithm that is based on

this notion. Analysis of the proposed approach in the context of discrete state domains helps

in better understanding of the underlying problems. It also provides a good starting point for

applying the algorithm to continuous state domains, which is presented in the following chapter,

namely Chapt. 6.

5.1 Ambiguity functional for discrete transition and reinforce-

ment functions

The idea presented in this chapter is also described by Papis and Pacut in [92]. In the discrete

case evaluating a set of abstract states into a number is quite easy. It is sufficient to count the

number of different abstract state-reinforcement pairs in the given set, Λ function’s argument.

Because they represent the number of possible outcomes from an evaluated abstract state, the

more of them there is, the more ambiguous the abstract state is. The ambiguity function Λ,

which determines the means of calculating the ambiguity functional for the discrete case can be

defined as follows::

Λ(X̂t+1) = ‖X̂t+1‖−1 (5.1)

76



The function’s argument is denoted as X̂t+1 figuratively: X̂ indicates that the set contains el-

ements from the abstract space (and reinforcement values), and t + 1 subscript indicates that

these elements are a result of the transition and reinforcement functions. The last term, 1, is

subtracted from the result so that an unambiguous measurement will yield 0, and thus cor-

rect model-preserving abstractions that have no ambiguous measurements will yield ambiguity

functional’s value of 0. This definition satisfies properties (2). Abstract states that are more

ambiguous will make transition function and reinforcement functions yield more different ele-

ments, which will be contained in X̂t+1. On the other hand, unambiguous abstract states will

yield only one element and this is the lowest possible number of successor abstract states.

Because of properties (1) and (2) minimizing functional A with the inner Λ function defined

as above is equivalent to transforming the index set in the same way as the H function described

in Sec. 4.2 and reaching the fixed-point of this transformation. As presented in Example 4.2.1,

these properties do not guarantee an optimal solution to the non-linear problem presented in

(4.2). In the following sections we present some possible heuristics that can alleviate this sub-

optimality.

Thought Experiment 5.1.1. To illustrate introduced notions with a simple example, we will

now calculate the values of the discrete ambiguity functional for some abstraction functions.

Consider the Discrete Labyrinth environment. Recall the complete set of measurables: x,y,x+

y, |x− y|,xy and consider the following abstractions:

1. φ 1 = φ{1,4} (selected measurables: y, |x− y|)

2. φ 2 = φ{1,3,4} (selected measurables: y,x+ y, |x− y|)

3. φ 3 = φ{1,3} (selected measurables: y,x+ y)

For the first abstraction function, φ 1, the maximum possible value of the ambiguity functional

for one abstract state (see (5.1)) is 2, because in this abstraction at most two measurements can

be represented by a single abstract state (at most two possible (x,y) solutions for the pair of

equations y = c1, |x− y|= c2, where c1,c2 are some arbitrary constants). Indeed, this value can

be reached given the pair of states considered in the previous Example 4.2.1, namely: x1 =

(x = 2,y = 2, . . .) and x2 = (x = 3,y = 1, . . .) for action u = LEFT. Because in the first case

the agent will successfully move to the left ((x = 1,y = 2, . . .)), and in the second case will hit

the wall, the set X̂t+1 will contain two different state-reinforcement pairs: (x1
t+1,r

1
t+1) = ((x =
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1,y = 2, . . .),−1) and (x2
t+1,r

2
t+1) = ((x = 3,y = 1),−5), which form two different abstract

state-reinforcement pairs: (x̂1,r1
t+1) = ((y = 2, |x−y|= 1),−1) and (x̂2,r2) = ((y = 1, |x−y|=

2),−5). Thus the Eq. (5.1) will yield 2. Because this is the worst case scenario in terms of the

ambiguity, A(φ 1) = 2−1 = 1 (according to (5.1)).

Similar reasoning to the one in Example 4.1.1 can be presented for abstraction φ 2. There ex-

ist a bijection between abstract vectors created by this abstraction and environment’s underlying

state (x,y), namely:

g((y,x+ y, |x− y|)) = (x+ y− y,y)

Other possible way to look at it: for any nonnegative constants c1,c2,c3 the set of equations:

y = c1

x+ y = c2

|x− y|= c3

is overdetermined. Thus there will be always only one abstract state in the set X̂t+1, and there-

fore A(φ 2) = 1−1 = 0 (according to (5.1)).

Consider now the last abstraction: φ 3. It can be noted again that a bijection exists that can

map between abstract states and measurements. Thus, by analogy to the previous reasoning

A(φ 3) = 1−1 = 0.

�

5.2 The proposed algorithm for discrete state domains

With the concrete definition of the ambiguity functional presented in Eqs. (4.10), (5.1) we have

means of comparing the abstraction functions. Because the proposed definition satisfies the

properties described in lists (1) and (2) we can employ it in the incremental process presented

in Sec. 4.2. The proposed algorithm is presented in Listing 1. In the following section we

evaluate this algorithm using the knowledge about the transition and reinforcement functions

of the environment to be able to calculate the exact values of the ambiguity functional. Having

shown that the algorithm works, in Sec. 5.4 we propose a method of estimating the values of the

ambiguity functional from a random set of samples. While the knowledge about transition and

reinforcement functions is still used to estimate the values of the ambiguity functional faster,
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Algorithm 1 Incremental state abstraction algorithm
1: φ ← φ /0

2: Calculate A(φ)

3: for φ i in all possible abstractions with one extra measurable do

4: Calculate A(φ i)

5: φ ext← arg min
a∈{φ ext,φ i}

A(a)

6: end for

7: if A(φ ext)< A(φ) then

8: phi← φ ext

9: GOTO 2

10: else

11: STOP.

12: end if

it is not directly used to calculate the results. Chapter 7 contains experiments that evaluate the

algorithm on a purely random set of samples, i.e. without the simulator assumption, described in

Sec. 3.2. The experiments in Sec. 5.4 show that it is not sufficient to only include measurables

in the abstraction step by step. Therefore, in the next section, namely Sec. 5.5, we present

additional mechanism that also removes measurables from the abstraction. This in turn leads to

evaluation of too many possible abstractions. Thus, we propose to keep track of the number of

measurables in the smallest model-preserving abstraction found, and do not evaluate any larger

abstractions until it is needed. This significantly reduces the number of evaluated abstractions.

The final algorithm is presented in Listing 3.

5.3 Evaluation of the algorithm with exact values of the am-

biguity functional

Computer Experiment 5.3.1. To verify correctness of the described process let us evaluate its

simple implementation on a simple problem. Consider again the Discrete Labyrinth domain

with 100 measurables. First seven of them are: x,y,x+ y, |x− y|,xy,qx = b
√

xc,qy = b
√

yc and

the rest consists of 93 randomly generated functions. For better readability let us define the
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following function for convenience:

NZ(x) =

x x 6= 0

1 x = 0

For the sake of brevity, we list only a subset of the generated functions, relevant to the solutions

presented below: F9 =
⌊

y+ siny
NZ(x)

⌋
, F31 =

⌊
y+ y2⌋, F42 = b|x|− x− cosyc, F46 = bxy−|x|c,

F55 =
⌊

x3 + |x|
NZ(y)

⌋
, F58 = bcosxc, F62 =

⌊
siny

NZ(y) + sinx
⌋

, F66 = bxsinxc, F67 =

⌊
y√

NZ(y)

⌋
, F88 =⌊

x6+2y
NZ(y2)

⌋
, F93 =

⌊
cosx+ x− x3 +

√
NZ(y)

⌋
, F97 =

⌊
x2

NZ(sinx)

⌋
.

The results from 10 runs of this algorithm are presented in Tab. 5.1. The “Decision se-

quence” column presents the order in which measurables were being included to the abstrac-

tion. Algorithm’s decisions regarding including or removing a measurable are denoted with

the “+” and “−” signs, resp. The second column, “Result” presents the measurables in the

final abstraction with the exact value of its ambiguity functional presented in the third column,

“Ambiguity”. “Correctness” column indicates whether the result is correct, i.e. is an abstrac-

tion with minimal number of measurables, sufficient to describe environment’s behaviour. All

results were verified numerically: each abstraction yields a set of abstract states that has a 1−1

relationship with a set of all possible (x,y) pairs. If the index set would be extended with the

Table 5.1: Results for the 100-dimensional Discrete Labyrinth problem with exact calculation

of the ambiguity functional.

Run # Decision sequence Result Ambiguity Correctness

1 +F93, +F42 (F93,F42) 0 4

2 +F93, +F9 (F9,F93) 0 4

3 +F46, +F88 (F46,F88) 0 4

4 +F66, +F93 (F66,F93) 0 4

5 +F66, +F62 (F62,F66) 0 4

6 +F93, +F97 (F93,F97) 0 4

7 +y, +F93 (y,F93) 0 4

8 +F31, +F46 (F31,F46) 0 4

9 +F46, +F58 (F46,F58) 0 4

10 +F46, +F67 (F46,F67) 0 4

following measurable: o = 10y+ x, which maps every possible plant’s underlying state to an
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ordinal number, then the algorithm always chooses it in the first step, and the result in every run

consists of an abstraction with one measurable: (o), with ambiguity 0, as presented in Tab. 5.2.

Table 5.2: Results for the 100-dimensional Discrete Labyrinth problem with exact calculation

of the ambiguity functional, with one universal measurable added.

Run # Decision sequence Result Ambiguity Correctness

1 +o (o) 0 4

2 +o (o) 0 4

3 +o (o) 0 4

4 +o (o) 0 4

5 +o (o) 0 4

6 +o (o) 0 4

7 +o (o) 0 4

8 +o (o) 0 4

9 +o (o) 0 4

10 +o (o) 0 4

�

In general, to calculate the exact value of the ambiguity functional for a given abstraction, as

in the above experiment, one needs to know φ−1(x̂), and about the transition and the reinforce-

ment functions. In practice, this is impossible. The following section presents the proposed

solution to this problem.

5.4 Estimating the ambiguity functional

To partially overcome the problem of unknown transition and reinforcement functions, and thus

contents of the sets φ−1(x̂) we can somehow estimate the value of the ambiguity functional. In

a typical to RL manner we start by gathering samples through an interaction with the plant. To

estimate φ
−1
I (x̂), one must group measurements x(t) by the values of the vectors ˆx(t). Abstract

states are being grouped either by their exact values in the discrete case or by the proximity

criterion based on the estimated average value of the measurables. Thus, to cover both cases
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uniformly, the proximity parameter can be estimated as follows, introducing the resolution pa-

rameter ρ:

ε = E|x(t)−x(t−1)|/ρ (5.2)

where ρ > 0. Vector ε defines a maximum possible distances between the measurables to be

treated as representing the same measurement. This is a common approach used in Process

Control, where such parameters are called deadbands [55]. For discrete environments this

vector is a zero vector.

In the context of an abstraction function φI and its index set I, a group of measurements

belonging to one abstract state is defined as follows:

Sx̂
φI

=
{

x : |φI(x)−φI(x0)|< φI(ε)
}

(5.3)

where x0 ∈ Sx̂
φI

is the first measurement added to the group, acting as the arbitrarily distin-

guished measurement.

Each group of measurements will contain some elements of the inverse image of φI, for

each abstract state. The terms φ
−1
I (x̂) for all abstract states being evaluated are substituted by

their approximations Sx̂
φI

.

Psychological context The idea that a recurring event (here: values of a subset of measur-

ables) fosters stimulus discrimination ability is also investigated in psychology [50]. If an event

does not appear enough times many measurables (discriminators) appear to be directly related

with the event’s consequences [102]. �

With the estimated contents of φ
−1
I (x̂) and the use of the simulator (the simulator assump-

tion described in Chapt. 3), the values of ¯̄
φI( fx(x,u), fr(x)) for all u ∈ U can be easily deter-

mined, and used to estimate the ambiguity functional.

Computer Experiment 5.4.1. Let us now evaluate the idea presented above with an experi-

ment. We will run the same process as we did in Example 5.1.1 above, but this time the ambi-

guity functional will be estimated from a random sample of states. Consider again the Discrete

Labyrinth task with only seven measurables: x,y,s = x+ y,d = |x− y|,m = xy,qx = b
√

xc,qy =

b√yc. Because the values of the ambiguity functional are now being estimated, we reiterate the

algorithm if for some estimation it does not insert any measurables. We assume that the process

is finished if it fails to insert any measurables for MaxFailureCount number of times in a row.

The results from 10 runs of this algorithm are presented in Tab. 5.3. The ambiguity functional
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for each abstraction was estimated with 25 random states. Meaning of the columns is the same

as described in Experiment 5.3.1. All results were verified numerically: each abstraction yields

a set of abstract states that has a 1− 1 relationship with a set of all possible (x,y) pairs. This

demonstrates the problem described in Example 4.2.1 in practice: there are possible scenarios

that can lead to a non-optimal solution in terms of number of measurables, as can be seen in

the 8th run of this experiment. The proposed solution to this problem is presented in the next

section.

Table 5.3: Results for the 7-dimensional Discrete Labyrinth problem with estimation of the

ambiguity functional. The MaxFailureCount parameter was set to 5.

Run # Decision sequence Result Ambiguity Correctness

1 +x, +y (x,y) 0 4

2 +y, +m, +x (x,y,m) 0 6

3 +s, +y (y,s) 0 4

4 +s, +y (y,s) 0 4

5 +s, +x (x,s) 0 4

6 +s, +y (y,s) 0 4

7 +s, +x (x,s) 0 4

8 +m, +d, +y (y,d,m) 0 6

9 +x, +y (x,y) 0 4

10 +s, +y (y,s) 0 4

�

5.5 Inserting and removing measurables

The incremental process presented in Sec. 4.2 includes the measurables one by one, thus lower-

ing the estimated value of the ambiguity functional. When the value of the ambiguity functional

is estimated from a finite set of samples, the algorithm is prone to choosing an abstraction that

looks better than the others for some set of samples, but in fact its ambiguity functional is larger

for another set of samples. Also, the process of constraining the abstraction presented in Sec.

4.2 can lead to suboptimal solution, depending on the order of inserting measurables. Because

of this it is necessary to constantly verify that previously included measurables are still needed.
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This is done by removing them, if this would not increase the value of the ambiguity functional.

This approach allows the extension algorithm to make mistakes including some incorrect mea-

surables that only look promising. After the correct measurables were found (and the value

of the ambiguity functional is low), it is be possible to determine if the previously included

measurables are redundant and can be removed. This is directly related to the problem in the

psychological experiment described in [102]. Let us recall again the incremental process of

forming subsequent abstractions: φ 1,φ 2, . . .. In each step of the proposed approach first we try

to extend the abstraction function by inserting a measurable do the index set, and thus creating

a new abstraction function. If none of the possible extensions lowers the ambiguity functional,

we try to reduce the abstraction by removing one of measurables from its index set if it will

not make the values of the ambiguity functional larger. We call the sequence of subsequent

abstractions resulting from these operations an abstraction path.

Thought Experiment 5.5.1. As an example, Figure 5.1 presents two possible abstraction paths

for a space with four measurables. The abstraction path marked with the red line at first performs

three consecutive extensions inserting measurables x3, x4 and x2 and then a reduction removing

the measurable x4. This corresponds to the following sequence of abstraction functions along

with their index sets:

φ /0
+3−→ φ{3}

+4−→ φ{3,4}
+2−→ φ{2,3,4}

−4−→ φ{2,3} (5.4)

Similarly, the abstraction path denoted with the blue line presents the following sequence of

extensions and reductions:

φ /0
+2−→ φ{2}

+1−→ φ{1,2}
+3−→ φ{1,2,3}

+4−→ φ{1,2,3,4}
−2−→ φ{1,3,4}

−3−→ φ{1,4}
−3−→ φ{1,4} (5.5)

�

A question that naturally comes to mind is: what if an abstraction path will intersect itself?

Fortunately, theoretically, this is impossible. Consider the following reasoning.

Theorem 5.5.1. The proposed incremental process of constructing an abstraction function will

not evaluate the same abstraction more than once.

Proof. Assume an arbitrary point on an abstraction path, corresponding to an index set I. We

say that a measurable (or an index) disambiguates an abstract state x̂ if inserting it to some

abstraction φ will lower the ambiguity functional calculated for that state. Looking again at
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Fig. 5.1, it is convenient to think about extensions as going up the abstraction path diagram,

and reductions as going down. Abstractions on the same level of the diagram, are the ones with

equal sizes of their index sets, and we call them siblings. The following proof shows that it it

impossible to reach an already visited point on an abstraction path via extensions and reductions

with the approach described above.

Each element i in the index set I (the starting point) was added because it disambiguates

some abstract state x̂i. The next operation, according to the approach described above, can be

either an extension or a reduction (if none of them is possible, the process ends and the statement

under the question holds). To reach the starting point again the subsequent extension/reduction

operations must create a cycle. The point before the last point in the cycle (which would be the

starting point again) must be either on the higher level of the abstraction path diagram (from

which it will reach the starting point via a reduction) or on the lower level (from which it will

reach the starting point via an extension). Reaching the starting point from a sibling point

is impossible, because that would involve substitution of measurables, which is not among

possible operations in our approach.

1. Consider the first possibility: is it possible to reduce from a point K, being one level

above the starting point, to I, if the process has already visited I? Let j be the one

measurable present in K and not present in I, i.e. j = K\I. If at some point of the

supposed cycle j was added to the set, it must have been because there exists an abstract

state x̂ j disambiguated by j with measurables from I already present in the abstraction.

This means that it is impossible to remove j from the index set, because that would make

the ambiguity functional larger.

2. Consider the second possibility: is it possible to extend from a point H, being one level

below the starting point, to I, if the process has already visited I? Let h be the one

measurable present in I and not present in H, i.e. h = I\H. If at some point of the

supposed cycle h got removed, it means there is no abstract state x̂h that determined the

value of the ambiguity functional (because of the maximization, one abstract state can

do that) and was disambiguated by the measurable h. This means that it is impossible to

insert h to the index set, because that would not make the ambiguity functional lower.

Thus, if values of the ambiguity functional can be calculated accurately, cycles in abstraction

paths are impossible.
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However, in practice (as it is presented in the following sections), the ambiguity functional

is estimated from a finite sample of states. Because of that, when performing an extension with

measurable i the abstract state disambiguated by i, x̂i is stored in an entity called extension

memory. Extension memory holds the states that justified inclusion of a particular measurable.

Each reduction operation is additionally verified with the states from the extension memory, so

it is also impossible to form a cycle in a practical setting.

(x1) (x2) (x3) (x4)

(∅)

(x1,x2,x3,x4)

(x1,x2,x3) (x1,x2,x4) (x1,x3,x4) (x2,x3,x4)

(x1,x2) (x1,x3) (x1,x4) (x2,x3) (x2,x4) (x3,x4)

Figure 5.1: All possible subsets of measurables for a four-dimensional space with measurables:

{x1,x2,x3,x4}. Black lines indicate a possible transition between abstract state spaces by in-

serting (when going up the diagram) or removing (when going down the diagram) measurables.

Red and blue lines present two exemplary abstraction paths.

Computer Experiment 5.5.1. To evaluate the method proposed above, we will run the same

process as we did in Example 5.4.1 above, but this time the algorithm is modified: it attempts to

remove redundant measurables. Again, the test problem is the Discrete Labyrinth environment

with seven measurables: x,y,s = x+ y,d = |x− y|,m = xy,qx = b
√

xc,qy = b
√

yc. To speed

up the process, if some extensions improve the ambiguity functional equally, they are all con-

sidered as possible solutions. Thus, the algorithm evaluates many possible abstraction paths

simultaneously. The procedure for one abstraction path is presented in Listing 2. To hold the

property of not self-intersecting abstraction paths described in Sec. 5.5 a collection called ex-

tension memory is introduced. It holds all samples used for estimating the ambiguity functional,

if as a result of this estimation the current abstraction was extended. The results from 10 runs of

this algorithm are presented in Tab. 5.4. Columns have similar meaning to the ones described

in Experiment 5.3.1. The “Example decision sequence” column presents the order, in which
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measurables were added to the abstraction, to reach one of possible solutions. This sequence is

exemplary, because the algorithm usually reaches the same abstraction through different paths

(although it never falls back to an already evaluated abstraction, to avoid cycles). For example,

all possible steps in the first run of the algorithm that led to reaching the (x,s) abstraction are

presented in Fig. 5.2. For readability of the results, we always present only one possibility as

an example. The second column, “Best results” presents all solutions reached by the algorithm.

Solutions are abstractions with the least number of measurables among the abstractions with the

lowest value of the ambiguity functional. This value is presented in the third column, “Ambigu-

ity”. The fifth column, “Correctness” indicates whether the solution is correct. The last column,

“Coverage” presents the coverage of the solution space - i.e. how many of possible abstractions

were evaluated by the algorithm in relation to the all possible number of abstractions.

These results show that the measurable removal mechanism seemingly solves the problem

of redundant measurables, present in the previous Experiment 5.4.1. The most complex exam-

ple of the behaviour this mechanism exhibits, can be seen in the last run, when two incorrect

measurables, namely qy and d, were added to the abstraction. First, a random sample of states

was generated that proved these two measurables (together with x) to be redundant, and in turn

qy was removed. After the correct measurables, s was added to the abstraction, d was also no

longer needed and the result again was rectified to contain only non-redundant measurables.

Similar, but simpler scenario occurred in the 5th run. The main problem with this approach is

large solution space coverage, which renders this solution to be still impractical. We deal with

this problem in the following section.

�

5.6 Estimating the order of the system

A natural solution to the problem presented in the previous section, in Experiment 5.5.1 is

to inhibit evaluation of abstractions of higher order, if there are still abstractions with lower

order that look promising. Specifically, if at least one abstraction with k measurables, was not

extended then, there is no point in evaluating abstractions with more than k measurables. The

algorithm employing this idea is presented in Listing 3.

Psychological context The psychological intuition behind this idea is that people prefer sim-

ple explanations over more complicated ones (e.g. [95]). Similarly to this principle we assume
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Table 5.4: Results for the 7-dimensional Discrete Labyrinth problem with estimation of the

ambiguity functional.

Run # Example decision sequence Best results Ambiguity Correctness Coverage

1 +x,+s (x,s),(x,y),(y,s) 0 4 49%

2 +x,+y (x,s),(x,y),(y,s) 0 4 50%

3 +s,+x (x,s),(x,y),(y,s) 0 4 50%

4 +x,+s (x,s),(x,y),(y,s) 0 4 50%

5 +y,+m,+s,−m (x,s),(x,y),(y,s) 0 4 50%

6 +x,+y (x,s),(x,y),(y,s) 0 4 50%

7 +x,+s (x,s),(x,y),(y,s) 0 4 50%

8 +x,+s (x,s),(x,y),(y,s) 0 4 49%

9 +y,+s (x,s),(x,y),(y,s) 0 4 49%

10 +qy,+x,+d,−qy,+s,−d (x,s),(x,y),(y,s) 0 4 50%

that until all abstractions of lower order (i.e. that preserve less measurables) are not proven to be

incorrect, we do not want to evaluate ones of higher order (i.e. that preserve more measurables).

�

Computer Experiment 5.6.1. To verify correctness of the order estimation idea, we run this

algorithm on the Discrete Labyrinth environment. The results are presented in Tab. 5.5. Mean-

ing of the columns is the same as described in Experiment 5.5.1. It can be seen that the idea

proposed in this section works as expected, and the coverage of the solution space has been

significantly reduced.

�
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(x ,s)

(s) (x)

+x +s

(s, rx) (x , rx)(x , y)∅(x ,s)

−rx

+x

−x +x −y −rx

...

Figure 5.2: All possible steps leading to the (x,s) abstraction in the first run of the algorithm,

presented in Tab. 5.4.

Table 5.5: Results for the 7-dimensional Discrete Labyrinth problem with estimation of the

ambiguity functional and with order estimation.

Run # Example decision sequence Best results Ambiguity Correctness Coverage

1 +qx,+x,−qx,+s (x,s),(x,y),(y,s) 0 4 22%

2 +y,+s (x,s),(x,y),(y,s) 0 4 23%

3 +x,+y (x,s),(x,y),(y,s) 0 4 22%

4 +qx,+x,−qx,+y,−x,+s (x,s),(x,y),(y,s) 0 4 22%

5 +s,+x (x,s),(x,y),(y,s) 0 4 20%

6 +s,+x,−s,+y (x,s),(x,y),(y,s) 0 4 23%

7 +qx,+x,−qx,+y,−x,+s (x,s),(x,y),(y,s) 0 4 21%

8 +qy,+y,−qy,+x (x,s),(x,y),(y,s) 0 4 20%

9 +m,+x,−m,+y (x,s),(x,y),(y,s) 0 4 20%

10 +qy,+y,−qy,−y,+x,+s (x,s),(x,y),(y,s) 0 4 22%
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Algorithm 2 Algorithm with measurable removal and ambiguity estimation
1: Start with the null abstraction φ ← φ /0

2: Estimate the value of the ambiguity functional for φ and for all possible abstractions with

one extra measurable

3: if An abstraction with extended set of measurables φ ext, for which A(φ ext) < A(φ) exists

then

4: Remember the current sample in extension memory

5: Reset the failure counter

6: φ ← φ ext and start over from step 2

7: else

8: Estimate the value of the ambiguity functional for φ and for all possible abstraction with

one measurable removed

9: Choose randomly an abstraction φ red for which A(φ red) ≤ A(φ), with the value of the

ambiguity functional estimated with random samples and with samples from extension

memory

10: if For any φ red A(φ red)≤ A(φ) then

11: φ ← φ red

12: Reset the failure counter

13: Start over from step 2

14: else

15: Increment the failure counter

16: end if

17: end if

18: if The value of the failure counter ≥MaxFailureCount then

19: STOP

20: else

21: Start over from step 2

22: end if
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Algorithm 3 Algorithm with measurable removal and ambiguity estimation
1: Start with the null abstraction φ ← φ /0

2: Set order← 0

3: Estimate the value of the ambiguity functional for φ and for all possible abstractions with

one extra measurable

4: if An abstraction with extended set of measurables φ ext, for which A(φ ext) < A(φ) exists

then

5: Remember the current sample in extension memory

6: Reset the failure counter

7: if Any abstraction with k measurables was evaluated and not extended then

8: add φ ext to the queue, but do not evaluate it

9: else

10: order← order+1

11: φ ← φ ext and start over from step 2

12: end if

13: else

14: Estimate the value of the ambiguity functional for φ and for all possible abstraction with

one measurable removed

15: Choose randomly an abstraction φ red for which A(φ red) ≤ A(φ), with the value of the

ambiguity functional estimated with random samples and with samples from extension

memory

16: if For any φ red A(φ red)≤ A(φ) then

17: φ ← φ red

18: Reset the failure counter

19: Start over from step 2

20: else

21: Increment the failure counter

22: end if

23: end if

24: if The value of the failure counter ≥ 10 then

25: STOP

26: else

27: Start over from step 2

28: end if
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Chapter 6

Ambiguity resolving approach for

continuous domains

This chapter develops the ideas presented in the previous chapter to be applicable to the con-

tinuous state context. We provide means of estimating the ambiguity functional for continuous

transition and reinforcement functions and propose a continuous version of state abstraction

algorithm.

In this chapter we present the first, known to the author, numerical simulation of a state

abstraction algorithm in a continuous state domain (starting from Experiment 6.5.1). In the first

series of experiments, we use generated samples (simulator assumption, described in Sec. 3.2).

This allows us to generate samples close to the centers of sample groups (see Sec. 5.4), needed

to estimate the value of the ambiguity functional. Usually, in practice, this is not possible,

because given a measurement the knowledge about the plant’s underlying state is essential in

order to generate another valid measurement in a desired proximity. However, this allows us to

analyze all possible abstraction paths and verify that the algorithm behaves correctly regardless

of the abstraction path determined by a particular order of samples. Assuming that all measure-

ments have non-zero probability of occurring, we would observe them eventually - it just may

take a very long time. In Chapt. 7 we show how the algorithm can be used in a more practical

scenario that does not require a model of the plant.
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6.1 Ambiguity functional for continuous transition and rein-

forcement functions

For continuous transition functions, it is not possible to count the number of different abstract

states in the given set, as suggested by (5.1), because it is hard to define what is the meaning

of “different” in the continuous case. However, if we introduce a distance threshold parameter,

we can count the number of abstract state pairs with a distance above that threshold. This step

is similar to the way the discrete problem statement in (4.2) was extended to the continuous

form in (4.1). To decide whether a particular distance between the measurements makes them

equivalent, we use the threshold parameters introduced in Sec. 4.2, namely a vector θ (x) and

a scalar θ (r). These parameters contain values of distance thresholds for each measurable,

and reinforcement values separately. Conditions defined in (4.1) verify whether the values are

contained inside a hyper-sphere, because of the threshold parameter being a scalar and the

Euclidean distance between the measurements is being calculated. Here we propose to verify

whether they are contained within a box with its sides length defined by the threshold vector.

This is different than the assumption in (4.1), but it is consistent with the deadband approach

mentioned in Sec. 5.4. Formally, this condition is defined as the following predicate, which

verifies whether two abstract state-reinforcement pairs are different, in the context of a particular

abstraction φI:

Different((x1,r1),(x2,r2)) = |φI(x1)−φI(x2)|> φI(θ
(x))∨|r1− r2|> θ

(r) (6.1)

Using this definition of equivalence the number of different abstract state-reinforcement pairs

in the Λ function’s argument, set X̂t+1, can be counted. To account for the worst case, each of

the abstract states is chosen as a central abstract state and the abstract states outside of the box

centered at the central abstract state are counted. The result indicates the overall ambiguity:

Λ(X̂t+1) = max
(x0,r0)∈X̂t+1

‖
{
(x,r) ∈ X̂t+1 : Different((x0,r0),(x,r))

}
‖ (6.2)

Similarly to the discrete version (5.1), the continuous version satisfies the properties (2). Ab-

stract states that are more ambiguous will yield more different, in the sense defined in 6.1,

elements in Λ’s argument. For unambiguous abstract states, either different outcomes of the

transition and reinforcement functions will be indistinguishable in the context of the difference

predicate (6.1) or there will be only one element in the set, which will yield 0. Thus, analo-

gously to the discrete version presented in the previous section, minimizing this functional is

93



equivalent to transforming the index set by the H function as described in Sec. 4.2 and leads

to a suboptimal solution of the non-linear problem presented in (4.1). In further sections we

present some heuristics that can alleviate this suboptimality. The following section presents the

algorithm used for gathering sample groups, described in Sec. 5.4 for the continuous case.

6.2 The proposed algorithm for continuous state domains

With the definition of the ambiguity functional presented in Eq. 4.10 in Sec. 4.4 and Eq. 6.2 in

Sec. 6.1 above, we can apply the state abstraction algorithm from the previous chapter 5 to the

continuous state domains. However, we need a method of creating sample groups, described

in Sec. 5.4, for measurements from Rn- the following section 6.3 examines possible algorithm

that deal with grouping such vectors, and the next section 6.4 presents a modification, in relation

to the method from Sec. 5.4, of creating samples groups for the continuous state case.

Recall from Sec. 4.1 that in the continuous state case two additional threshold parameters

need to be determined. Section 6.5 presents a solution to this issue. Experiments show that

in the continuous case it is important to estimate the values of the ambiguity functional for

different abstractions to compare them, to have equal number of samples for each estimation.

Section 6.6 presents a simple modification of the sample group creation mechanism to deal with

this issue.

Finally, in Sec. 6.7 we introduce a modification to the method of calculating the threshold

parameters to compensate for transition functions that are expansive mappings. This leads us to

the final form of the algorithm, presented in Listing 9 in Sec. 6.8.

All modifications introduced in this section do not invalidate the algorithm in the discrete

context, as we show by evaluating the final form of the algorithm, without the simulator as-

sumption, on the Discrete Labyrinth in the following Chapter 7.

6.3 Estimating the ambiguity functional in the continuous

case

Grouping the abstract states by the values of measurables is in fact an instance of the fixed-

radius nearest neighbour problem [12]. Additionally, the queries about neighbouring abstract

states are issued in the context of different abstractions, and thus - different projections of the
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space of measurables. This problem is addressed by Papis and Pacut in [91]. In this section we

reiterate the most relevant, in the context of this work, parts of this paper.

6.3.1 Exact solution

The main purpose of our data structure is to answer the nearest neighbour queries in a context

of different projections. We adapt the solution presented in [37]. The presented idea is also con-

ceptually close to Random Projection techniques [19]. The algorithm is presented in Listings

4 and 5. We maintain all of the points sorted according to values of all measurables (line 10

of Algorithm 4). For each abstract state we also store their one-dimensional neighbourhoods,

which are updated during each insert (line 8 of Algorithm 4). Update of one axis has the com-

plexity of O(logk) for performing a binary-search with k abstract states, and O(m) for updating

neighbourhoods, with m neighbours. So, overall the update operation is O(n(logk+m)). Space

complexity is O(nkm) - for n axes we store m identifiers for each of k input points. Then, a

fixed-range query for one axis can be solved in O(logk+m) time (line 3 of Algorithm 5). The

results need to be aggregated for all axes, so that only the input points within the given radius

on all axes remain. Let us assume O(m) complexity for calculating the intersection of two hash

tables containing only point identifiers, i.e. integer numbers (line 4 of Algorithm 5). Then for

the Chebyshev metric for a particular projection related to a given abstraction, the fixed-radius

query has the complexity O(nm). The main drawback of this version is a constant radius query

parameter, however, for the purpose of abstract state aggregation this is not an important prob-

lem, as we calculate the ε parameter beforehand (see (5.2)). We call this version of the solution

the Log version.

6.3.2 Storage-less solution

Space complexity can be traded for query time complexity. If we will not store the neigh-

bourhoods and will not update them on each insert then: the update time complexity becomes

O(D logn) (D runs of Algorithm 6), space complexity becomes O(Dn), but the query time

complexity (Algorithm 7) becomes O(D(logn+m)) (or O(D2(logn+m)) for the Euclidean

distance). Additional important merit, relating the the memory expensive version presented in

previous Section, is that the radius query parameter is no long constant. This version will be

further referred to as the StoragelessLog version.
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Algorithm 4 Update operation for one axis. Log version of the proposed nearest neighbour

algorithm.
Require: point - new point to add to the structure

Require: pointId - identifier of the new point

Require: di - index of the dimension for this axis

1: lowerBound← pointdi− ε

2: upperBound← pointdi + ε

3: lowerBoundIndex← BinarySearch(sortedPoints, lowerBound)

4: upperBoundIndex← BinarySearch(sortedPoints,upperBound)

5: neighboursForNewPoint← EmptyList

6: for i← lowerBoundIndex to upperBoundIndex do

7: neighboursForNewPoint← neighboursForNewPoint ∪ sortedPointsi

8: storedNeighbourhoodsi← storedNeighbourhoodsi∪ pointId

9: end for

10: add point to sortedPoints at appropriate index

11: add a new neighbourhood for pointId with neighbours neighboursForNewPoint

Ensure: point with pointId identifier is added to the structure with calculated neighbourhood

and neighbourhoods of relevant points are updated

6.3.3 Approximate solution

For the purpose of the discussed bisimulation-based variable selection it is important to aggre-

gate similar abstract states, i.e. at most n-dimensional vectors that are close enough to each

other. From this point of view, if we know that a vector y is a neighbour of x, the information

that x is also a neighbour of y is obviously redundant. What is more, for a small radius the

neighbourhood of vector y will be very similar to the neighbourhood of vector x. Thus, we

do not loose much information by ignoring the neighbourhood of vector y. This situation is

presented in Fig. 6.1. The approximate version of the algorithm creates neighbourhood groups

only for input points that are not within range of some other input point. We call such input

points core points (analogy to the notion of core in the DBSCAN algorithm [27]). Then, the

space complexity reduces to O(k) for one axis, because each abstract state can be at most in

two overlapping neighbourhoods. However, to correctly return neighbourhoods for more than

one measurable, if a given point becomes a core point on one of the axes, it must be also added
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Algorithm 5 Query operation. Log version of the proposed nearest neighbour algorithm.
Require: pointId - identifier of a query point

Require: I - index set of a given abstraction

1: result← neighbourhood for pointId from the first axis from I

2: for all i ∈I except the first element do

3: partialResult← neighbourhood for pointId from the ith axis

4: result← hashtable intersection of result and partialResult

5: end for

Ensure: result contains the result of the fixed-radius query for a distance metric determined by

I

Algorithm 6 Update operation for one axis. StoragelessLog version of the proposed nearest

neighbour algorithm.
Require: point - new point to add to the structure

Require: pointId - identifier of the new point

Require: di - index of the dimension for this axis

1: insertionIndex← BinarySearch(sortedPoints, pointdi)

2: add point to sortedPoints at index insertionIndex

Ensure: point with pointId identifier is added to the structure

as a core point on other axes. Because of this the overall space complexity for the whole algo-

rithm is slightly worse than O(nk). The approximate version is presented in Listing 8. It is very

similar to the exact version (algorithm 4) with the difference in line 6 - if the condition is true,

then the added point falls within a range of some existing core point and will not be added to

sortedPoints collections. Otherwise, the added point forms its own, new neighbourhood (line

10). We call this version of the proposed solution the ApproximateLog version.

6.3.4 Experimental comparison of nearest neighbour algorithms

The proposed method is compared with state-of-the-art nearest neighbour algorithms. Experi-

ments were carried out for the Chebyshev distance, using random samples from the Cart-Pole

Swing-Up environment. In the presented graphs, the algorithms are called as follows:

• the M-Tree algorithm: MTree [14]

• the k-d tree algorithm: KdTree [36]
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Algorithm 7 Query operation for one axis. To aggregate the result for a particular index set I

algorithm 5 is used. StoragelessLog version of the proposed nearest neighbour algorithm.
Require: pointId - identifier of a query point

1: lowerBound← pointdi− ε

2: upperBound← pointdi + ε

3: lowerBoundIndex← BinarySearch(sortedPoints, lowerBound)

4: upperBoundIndex← BinarySearch(sortedPoints,upperBound)

5: result← all points with indices in range [lowerBoundIndex,upperBoundIndex)

Ensure: result contains the result of the fixed-radius query for this axis

Figure 6.1: Two neighbourhoods of two points (in blue) that are neighbours to each other.

One of them can be omitted at the expense of loosing information about one of non-common

neighbours (in red).

• a basic version of the proposed solution: Log

• a version with lowered memory usage: StoragelessLog

• an approximate version: ApproximateLog

The first four algorithms yield exact results, whereas the last one, ApproximateLog, can some-

times return incomplete neighbourhoods, as described in Sec. 6.3.3.

Figure 6.2 presents measurements of the query operation processing time, depending on the

number of abstract states processed so far. For 12 dimensions only the approximate solution can

compete with M-Tree and k-d tree. Figure 6.3 presents processing time of query operations for

10000 samples, depending on the number of queried dimensions. As in the previous scenario,

only the approximate solution yields similar results to M-Tree and k-d tree for 12 dimensions.
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Algorithm 8 Update operation for one axis. ApproximateLog version of the proposed nearest

neighbour algorithm.
Require: point - new point to add to the structure

Require: pointId - identifier of the new point

Require: di - index of the dimension for this axis

1: lowerBound← pointdi− ε

2: upperBound← pointdi + ε

3: lowerBoundIndex← BinarySearch(sortedPoints, lowerBound)

4: upperBoundIndex← BinarySearch(sortedPoints,upperBound)

5: neighboursForNewPoint← EmptyList

6: if lowerBoundIndex < upperBoundIndex then

7: for i← lowerBoundIndex to upperBoundIndex do

8: storedNeighbourhoodsi← storedNeighbourhoodsi∪ pointId

9: end for

10: else

11: add point to sortedPoints

12: add a new neighbourhood for pointId with neighbours neighboursForNewPoint

13: end if

Ensure: point with pointId identifier is added to the structure with calculated neighbourhood

or neighbourhoods of relevant points are updated

When considering queries for different combinations of input dimensions, the ordinary methods

need to maintain one instance of their whole structure per one subset of input dimensions, which

in turn results in high update query costs. This drawback is not present in StoragelessLog and

ApproximateLog versions of the proposed solution, and thus their average update times are

the smallest. This is presented in Fig. 6.4. Note that in these experiments not all of possible

subsets of dimensions were considered - it would be impractical for the MTree and KdTree

methods, as the number of possible subsets of input dimensions is 2n. On the other hand,

the methods proposed in this work need only n simple structures to maintain and can handle

any of 2n possible dimension subsets. This figure shows also a problem with Log version -

update processing time grows substantially when there is too much neighbourhoods to handle.

ApproximateLog version is not affected by this issue.
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Figure 6.2: Processing time of fixed-radius query for 12 dimensions for number of input points

processed so far (×100). In this case only ApproximateLog version of the proposed method is

comparable with MTree and KdTree solutions.

6.3.5 Preliminary evaluation of the abstraction algorithm in the continu-

ous case

In this section we present a simple analysis of the abstraction algorithm’s behaviour when using

the continuous definition (6.2) of the ambiguity functional.

Thought Experiment 6.3.1. Let us examine the consequences of using the continuous defi-

nition of the ambiguity functional. We will show that a simple, straightforward application of

this definition in the incremental process presented in Sec. 4.2 is not enough for the algorithm

to work. We will use a small set of measurements for the Continuous Labyrinth environment,

so it will be possible to calculate the values of the ambiguity functional by hand. Consider the

following measurables: x,y,vx,vy and the following abstractions: φ{x} and φ{x,y}. Assume the

following epsilon vector values: ε = (0.001,0.001,0.001,0.001) and the following threshold

vector values: θ (x) = (0.001,0.001) and θ (r) = 1. Assume the following measurements would
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Figure 6.3: Processing time of fixed-radius query after 10000 input points for the given number

of dimensions, for the Cart-Pole generator. Similarly to the case with fixed number of dimen-

sions, presented in Fig. 6.2, MTree and KdTree and ApproximateLog version of the proposed

method seem to be the best in terms of processing time.

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35 40 45 50

P
ro

ce
ss

in
g 

ti
m

e
 [

m
s]

No. of samples processed so far (x 100)

ApproximateLog

KdTree

Log

MTree

StoragelessLog

Figure 6.4: Average processing time of 1000 update operations against number of input points

so far, up to 5000 samples. Two of the proposed methods, namely StoragelessLog and Approxi-

mateLog versions, along with the MTree structure, outperform the KdTree solution. Processing

time of Log version becomes unacceptable for large number of samples.
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Figure 6.5: Average processing time of 1000 subsequent queries, for random number of dimen-

sions, against number of samples processed so far. ApproximateLog solution yields the lowest

processing time.

have been generated for the purpose of estimating the ambiguity functional:

x1 = (x = 2.9,y = 9,vx = 0,vy = 0)

x2 = (x = 2.9,y = 7,vx = 0,vy = 0)

x3 = (x = 2.9,y = 0.5,vx = 0,vy = 0)

x4 = (x = 2.9,y = 0.5,vx = 0,vy = 1)

(refer to Fig. 2.1). The discussed scenario is illustrated in Fig. 6.6. Consider the action u =

RIGHT, and calculate A(φ{x}), referring to the transition and reinforcement function definitions

in Sec. 2.3. In the context of φ{x} one abstract state represents all of the given measurements:

x̂1 = φ{x}(x1) = . . .= φ{x}(x4) = (x = 2.9)

Applying the transition and reinforcement functions to measurements represented by this state

yields the following X̂t+1 set of next-time abstract state-reinforcement pairs:

X̂1
t+1 = {((x = 3),−1),((x = 2.9),−5)}

The abstract state x̂1 represents four states near the vertical wall inside the labyrinth (refer to

Fig. 2.1). The first and the last two states allow the agent to execute the RIGHT action, and in
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Figure 6.6: Four samples near the vertical wall in the Continuous Labyrinth. The arrows indi-

cate the outcome of the RIGHT action. The first sample from the top will move to the right.

The second one will hit the wall, and thus the agent will bounce back to the initial position. The

third sample has a positive vertical velocity and thus will move to right and up. The last sample

will move to the right, like the first one.

turn move to the right, changing its position to x = 3 and producing reinforcement equal to −1.

The second state has the vertical wall to its right so an attempt to move to the right results in

hitting the wall, and thus being bounced back to the initial position and producing reinforcement

−5. This determines that X̂1
t+1 contains two different abstract state-reinforcement pairs. Thus,

according to (6.2), Λ(X̂1
t+1) = 1. This implies, according to (4.10) that A(φ{x}) = 1 (other

actions do not yield larger values in this case).

Consider now the second abstraction, φ{x,y}, and calculate A(φ{x,y}). The abstract states

representing the given measurements are as follows:

x̂1 = φ{x,y}(x1) = (x = 2.9,y = 9)

x̂2 = φ{x,y}(x2) = (x = 2.9,y = 7)

x̂3 = φ{x,y}(x3) = φ{x,y}(x4) = (x = 2.9,y = 0.5)

Consider again action u=RIGHT. Applying the transition and reinforcement functions to these
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measurements yields the following X̂t+1 sets of next-time abstract state-reinforcement pairs:

X̂1
t+1 = {((x = 3,y = 9),−1)}

X̂2
t+1 = {((x = 2.9,y = 7),−5)}

X̂3
t+1 = {((x = 3,y = 0.5),−1),((x = 3,y = 1.5),−1)}

Analogously to the reasoning for φ{x} this implies that A(φ{x,y}) = 1, because of two different

abstract state-reinforcement pairs in X̂3
t+1. Thus the algorithm would not extend the abstrac-

tion φ{x} with the measurable y even though, by intuition, it should - because it resolves the

ambiguity in the proximity of states x1 and x2.

�

The above example shows that the incremental process presented in 4.2 would not extend

the abstraction φ{x}, by inserting the y measurable, even though it partially resolves the ambi-

guity for φ{x} abstraction (Λ(X̂1
t+1) = Λ(X̂2

t+1) = 0, so without X̂3
t+1 the value of the ambiguity

functional for φ{x,y} is A(φ{x,y}) = 0). The set of samples in this example is as simple as possible

to illustrate the issue - the same phenomenon occurs for large groups of samples.

Another important conclusion from this example is that the abstraction functions are in

general incomparable when considering the whole space of measurables. Different measurables

might be important in different parts of the space of measurables. That is why in the final version

of the algorithm, after the incremental process has finished, the final result is evaluated using

an average over a specifically chosen group of sample states. The following section presents a

possible remedy to this problem.

6.4 Ambiguity sample groups

Recall from Sec. 5.4 that we estimate the inverse image φ−1 for some given abstraction φ by

gathering groups of measurements using a proximity criterion determined by vector ε (5.2).

Consider two abstraction functions φI and φK and assume that their index sets differ by one

variable: ‖K\I‖= 1. Denote any abstract state yielded by φI and φK by x̂(1) and x̂(2) resp. As

described in Sec. 5.4, for these abstractions, the groups of measurements that will be collected

by our algorithm are denoted by Sx̂
φI

and S
ŷ
φK

. We want to compare values of the ambiguity

functional for abstractions φI and φK locally, i.e. in the proximity of a particular abstract state

yielded by the finer abstraction. To be able to do this, we match the groups of samples for both
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abstractions by values of the common measurables and form pairs of groups, which we call

ambiguity samples and define them as follows. Denote with x an arbitrary vector in [x̂] and with

y an arbitrary vector in [ŷ]. Then:

Ax̂
φI→φK

=

{
(Sx̂

φI
,Sŷ

φK
) : ∀

i∈I
|xi−yi|< εi

}
(6.3)

Note that the condition on the RHS is based only on measurables that are preserved by both

abstractions, i.e. measurables from the smaller index set I. There is one extra element in the

index set Kbut it is ignored, and not used for vector y. The purpose of comparing values of the

ambiguity functional estimated from such ambiguity samples is to determine whether this extra

measurable helps in making the abstraction less ambiguous.

The notation has the following meaning: the superscript x̂ denotes that this is an ambiguity

sample group for the vector x̂ and the subscript φI→ φK denotes that this contains pairs of

groups gathered for φI and φK matched by values of their common measurables (i.e. ignoring

only one extra measurable from K).

This way the incremental abstraction process can verify if an extended abstraction φ ext is

better than the current abstraction φ in some particular point of φ ’s abstract state space, by

comparing values of the ambiguity functional for sample group pairs separately.

Thought Experiment 6.4.1. To verify the idea presented in this section, we will now reevaluate

the same scenario as in Example 6.3.1, i.e. the Continuous Labyrinth domain with the follow-

ing measurables: x,y,vx,vy. Consider abstractions φ{x} and φ{x,y} again. The sample groups

analyzed in this example are illustrated in Fig. 6.7. Assume the same proximity vector values:

ε = (0.001,0.001) and the same threshold vector values: θ (x) = (0.001,0.001) and θ (r) = 1

and the following measurements that would have been generated for the purpose of estimating

the ambiguity functional:

x1 = (x = 2.9,y = 9,vx = 0,vy = 0)

x2 = (x = 2.9,y = 7,vx = 0,vy = 0)

x3 = (x = 2.9,y = 0.5,vx = 0,vy = 0)

x4 = (x = 2.9,y = 0.5,vx = 0,vy = 1)

(refer to Fig. 2.1). Consider action u = RIGHT, and let us calculate A(φ 1). One abstract state

representing all of the given measurements is as follows:

x̂1 = φ{x}(x1) = . . .= φ{x}(x4) = (x = 2.9)
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Figure 6.7: Four sample groups: one for φ{x} abstraction (for the abstract state x̂1), and three

abstraction φ{x,y}. The measurements are drawn bigger than usual for clarity. Because values of

abstract states for all measurables contained in the coarser abstraction are equal (x = 2.9) these

groups form together an ambiguity sample Ax̂1

φ{x}→φ{x,y}
, containing all three pairs of the sample

group for the first abstraction with three sample groups for the second abstraction. Points were

moved slightly from their accurate positions not to obscure each other.

For the purpose of estimating the inverse image of φ{x} the following sample group is created:

Sx̂1

φ{x}
=
{

x1,x2,x3,x4}
Applying the transition and reinforcement functions to these measurements yields the following

X̂t+1 set:

X̂1
t+1 = {((x = 3),−1),((x = 2.9),−5)}

As in the previous Example 6.3.1, the abstract state x̂1 represents four states near the vertical

wall inside the labyrinth (refer to Fig. 2.1). The first and the last two states allow the agent

to execute the RIGHT action, and in turn move to the right, changing its position to x = 3

and producing reinforcement equal to −1. The second state has the vertical wall to its right

so an attempt to move to the right results in hitting the wall, and thus being bounced back

to the initial position and producing reinforcement −5. This determines that X̂1
t+1 contains

two different abstract state-reinforcement pairs. Thus, according to (6.2), Λ(X̂1
t+1) = 1. This

implies, according to (4.10) that A(φ{x}) = 1 (other actions do not yield larger values in this

case).

Consider now the second abstraction, φ{x,y} and calculate A(φ{x,y}). Abstract states repre-
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senting the given measurements are as follows:

x̂1 = φ{x,y}(x1) = (x = 2.9,y = 9)

x̂2 = φ{x,y}(x2) = (x = 2.9,y = 7)

x̂3 = φ{x,y}(x3) = φ{x,y}(x4) = (x = 2.9,y = 0.5)

Three sample groups are being created, each for one abstract state:

Sx̂1

φ{x,y}
=
{

x1}
Sx̂2

φ{x,y}
=
{

x2}
Sx̂3

φ{x,y}
=
{

x3,x4}
Consider again action u=RIGHT. Applying the transition and reinforcement functions to these

measurements yields the following X̂t+1 sets of next-time abstract state-reinforcement pairs:

X̂1
t+1 = {((x = 3,y = 9),−1)}

X̂2
t+1 = {((x = 2.9,y = 7),−5)}

X̂3
t+1 = {((x = 3,y = 0.5),−1),((x = 3,y = 1.5),−1)}

Sample group for φ{x} is matched with the sample groups for φ{x,y}, and create the following

ambiguity samples for the single abstract state x̂1 from abstraction φ{x}:

Ax̂1

φ{x}→φ{x,y}
=
{
(Sx̂1

φ{x}
,Sx̂1

φ{x,y}
),(Sx̂1

φ{x}
,Sx̂2

φ{x,y}
),(Sx̂1

φ{x}
,Sx̂3

φ{x,y}
)
}

Now, the values of the ambiguity functional are being compared separately for all three sam-

ple group pairs. In this case, Λ(X̂1
t+1) for φ{x} calculated using the Sx̂1

φ{x}
sample group yields

A(φ{x}) = 1. This is compared to Λ(X̂1
t+1) and Λ(X̂2

t+1) for φ{x,y}, calculated using sample

groups Sx̂1

φ{x,y}
and Sx̂2

φ{x,y}
respectively. The result for both of them is A(φ{x,y}) = 0, and the last

sample group for X̂3
t+1) yields A(φ{x,y}) = 1. The comparison for the the first two pairs justifies

extending the abstraction from φ{x} to φ{x,y}, successfully including the y measurable in the

result.

�

This experiment, along with Experiment 5.3.1 supports the third second-thesis, namely that:

the proposed notion of ambiguity correctly reflects the quality of a solution of a variable

selection task.

Before the algorithm can be used, we must find a way of estimating the threshold parameters

θ (x) and θ (r). The following section addresses this issue.

107



6.5 Determining the threshold parameters

Similarly to parameter ε (5.2), we can again estimate the average distances between consecutive

measurements, and use them as values for the threshold parameters:

θ
x = E|x(t)−x(t−1)|/ρ (6.4)

θ
r = E|r(t)− r(t−1)|/ρ

where ρ > 0 is the resolution parameter, introduced in (5.2).

Computer Experiment 6.5.1. In this experiment we test the complete algorithm presented in

Listing 9 on the Continuous Labyrinth problem with the following set of measurables: x, y, vx,

vy, x+ y, |x− y|, xy, qx =
√

x,qy =
√

y.

First, we gather 100000 samples to calculate vector ε as in (5.2), and the threshold values

θ (x) and θ (r) as in (6.9). Parameter ρ was set to 3. We start with the null abstraction: φ = φ /0.

Then we collect samples and every 500 steps try to reduce or extend the current abstraction

function φ . The results are presented in Tab. 6.1. Because all runs have failed and abstraction

paths were very long, reductions were omitted for readability.

The reason for these failures is as follows: consider two sample groups, one for φ and one

for φ ′, where φ ′ has is a result of including an additional measurable in the index set of φ .

Samples aggregated for the purpose of evaluating φ ′ have more dimensions (measurables) than

these collected for φ . The more dimension, the smaller probability of measurements to reoccur.

Thus, there are always more samples within the sample group with fewer measurables. Also,

if a pair of vectors is equal with respect to the finer abstraction, it implies that they are also

equal with respect to the coarser abstraction, but not the other way around. This leads to the

situation where two abstractions are being compared, but values of the ambiguity functional

are estimated for them with different number of measurements. This can be compensated if the

groups of vectors are very large. However, for the continuous case, in practice, this is unfeasible

- waiting for duplicate vectors is very time consuming. Another possibility is to collect samples

in two phases, and ensuring that they all have equal cardinality. The following section presents

that idea.

�
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Table 6.1: Results of the algorithm with threshold parameter estimation, for the 9-dimensional

Continuous Labyrinth problem.

Run # Example decision sequence Result Ambiguity Correctness

1 +x,+vx,+s,+qy,+m,+qx, . . . not finished not calculated 6

2 +x,+y,+vx,+vy,+s,+d, . . . not finished not calculated 6

3 +x,+vx,+m,+qx,+d,+qy,+s, . . . not finished not calculated 6

6.6 Two-phase ambiguity sample group collection

In Sec. 6.4 we proposed to accumulate similar measurements into ambiguity samples. In the

context of evaluating whether an abstraction φI should be extended to φK (where set I⊂K,

and K has exactly one additional element), we consider two sample groups: one for each ab-

straction. We denote this pair of sample groups, for one particular abstract state x̂ by Ax̂
φI→φK

(see (6.3)). It is a set of tuples, each consisting of two groups of similar measurements, mea-

surements SφI
, similar in the context of abstraction φI, and measurements SφK

, similar in the

context of abstraction φK (see (5.3)). The problem encountered at the end of Sec. 6.4 stems

from the fact that the number of measurements in these groups is usually different. To deal

with this issue, we propose to first collect groups SφI
for the abstraction with smaller number

of measurables, until we reach some predefined, desired number of groups (GroupCount pa-

rameter), and number of measurements in these groups (NeighbourCount parameter). We call

this phase the initial collection phase. After this phase is finished, we reuse all of the observed

vectors from groups SφI
and use them to form an initial set of groups SφK

. We then start the

secondary collection phase, to continue collecting samples in the same manner as in the initial

collection phase, until the same number of groups and neighbours in both groups is reached.

Then the value of the ambiguity functional can be estimated using groups with equal number of

measurements.

Computer Experiment 6.6.1. With this modification, the algorithm presented in the Listing

3 yields the correct results, presented in Tab. 6.2. The columns are the same as described in

Experiment 5.5.1, with the difference that not all of the resulting abstractions with ambiguity

functional equal to 0 are presented in the second column, for brevity. Taking all runs into

account, all possible solutions were found, and they were as follows:
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(x,y,vx,vy),(x,vx,vy,s),(x,vx,vy,d),(x,vx,vy,m),(y,vx,vy,s),(y,vx,vy,d),

(y,vx,vy,m),(x,vx,vy,qy),(y,vx,vy,qx),(vx,vy,s,qx),(vx,vy,s,qy),

(vx,vy,d,qx),(vx,vy,d,qy),(vx,vy,m,qx),(vx,vy,m,qy),(vx,vy,qx,qy)

In theory, combinations of measurables involving one coordinate (x or y) and d or m (being

defined as: d = |x− y| and m = xy) do not give full information on agent’s position. However,

situations in which values of such combinations of measurables are ambiguous are almost im-

possible to occur. This is because probability of a value of a continuous random falling into a

measure-zero set is zero. For example, the (x,m) abstraction correctly represents agent’s po-

sition in the labyrinth, except when agent is on the line x = 0. Similarly, for (d,qy): for each

qy, y is fixed and equal to y = q2
y , and ambiguous measurements lie on the line: f (x) = 2y− x.

Because the correct solution conditions are violated only for vectors from a measure-zero set,

we regard these solutions as correct.

Table 6.2: Results of the algorithm with two-phase ambiguity sample group collection for the

9-dimensional Continuous Labyrinth problem. Parameters were set for the following values:

GroupCount = 3,NeighbourCount = 5,ρ = 3.

Run # Examples of the results Ambiguity Correctness Coverage

1 (x,y,vx,vy),(x,vx,vy,s),(x,vx,vy,m),(vx,vy,s,qy) 0 4 32%

2 (x,vx,vy,m),(x,vx,vy,s),(y,vx,vy,s),(vx,vy,d,qy) 0 4 38%

3 (vx,vy,d,qx),(vx,vy,m,qy),(x,vx,vy,m),(x,vx,vy,s) 0 4 36%

4 (x,vx,vy,d),(y,vx,vy,d),(vx,vy,d,qy),(x,vx,vy,s) 0 4 35%

5 (vx,vy,m,qx),(vx,vy,m,qy),(x,vx,vy,m),(x,vx,vy,d) 0 4 33%

6 (x,vx,vy,s),(y,vx,vy,s),(x,y,vx,vy),(vx,vy,d,qy) 0 4 32%

7 (vx,vy,s,qy),(vx,vy,s,qx),(x,vx,vy,qy),(x,vx,vy,m) 0 4 33%

8 (y,vx,vy,qx),(vx,vy,qx,qy),(vx,vy,m,qy),(vx,vy,d,qy) 0 4 33%

9 (vx,vy,s,qy),(vx,vy,m,qx),(x,vx,vy,m),(x,vx,vy,s) 0 4 36%

10 (y,vx,vy,qx),(vx,vy,s,qy),(x,vx,vy,m),(x,vx,vy,qy) 0 4 34%

�

Computer Experiment 6.6.2. We also evaluate the two-phase collection version of the algo-

rithm in the Cart-Pole Swing-Up task. The results presented in Tab. 6.3. The columns are the
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same as described in Experiment 5.5.1. This time, for the Cart-Pole Swing-Up environment,

the algorithm fails. The problem is very subtle, and occurred only in only one of 10 runs. It is

caused by the fact that the transition function has a large Lipschitz constant, and even for cor-

rect abstraction the outcomes of the transition function for similar measurements can be very

different. There is a very low probability for this situation to occur, as it happens only for angles

close to 0, for example, when the sin function changes its value faster than in other part of its

domain. In such case, even when having complete information about the pole’s angle from sin

and cos measurables, the tan measurable is added. The following section presents a possible

solutions to this problem.

Table 6.3: Results of the algorithm with two-phase ambiguity sample group collection for the

10-dimensional Cart-Pole Swing-Up with a simple reinforcement function problem. Parameters

were set for the following values: GroupCount = 3,NeighbourCount = 5,ρ = 3.

Run # Examples of the results Ambiguity Correctness Coverage

1 (s,a, j) 0 4 37%

2 (c,a, j) 0 4 37%

3 (s,c,a) 0 4 38%

4 (c,a, j),(s,a, j) 0 4 37%

5 (s,c,a) 0 4 37%

6 (c,a, j) 0 4 37%

7 (s,c,a) 0 4 38%

8 (s,a, j) 0 4 37%

9 (v,s,c,a),(v,c,a, j),(s,c,a,k),(s,a, j,k) 0 6 62%

10 (s,a, j) 0 4 37%

�

6.7 Estimating the threshold parameters with variance

In Sec. 6.5 we presented a simple way of estimating the threshold parameters: thresholds

are equal to the average distances between the subsequent values of measurables. When the

transition function is a contraction, or at least its Lipschitz constant is not too large this is

sufficient, as was presented in the previous section with the results for the Continuous Labyrinth
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environment (Tab. 6.2). To account for the case when the transition function is not a contraction,

we propose to also estimate the standard deviation σ of these distances. Therefore, denoting

with θ any of the threshold parameters, the resulting threshold values will be calculated as:

θ + κσ , where κ is a parameter. Also, for different measurables the transition function may

introduce different expansion, so this estimation is done separately for each measurable.

The interval (θ − κσ ,θ + κσ) does not always make sense, as its left boundary may be

negative and distance should be non-negative. Thus we propose to estimate average logarithms

of distances instead, and calculate the resulting value of the threshold vector using the exp

function. The equations for calculating mean and variance components for θ (x) and θ (r) are as

follows:

Elnδx = Eln
|x(t)−x(t−1)|

ρ
(6.5)

Elnδ r = Eln
|r(t)− r(t−1)|

ρ
(6.6)

Vlnδx = Vln
|x(t)−x(t−1)|

ρ
(6.7)

Vlnδ r = Vln
|r(t)− r(t−1)|

ρ
(6.8)

where ρ > 0 is the resolution parameter, introduced in (5.2). The threshold values for each

measurable and for the reinforcement can be thus then defined as:

θ =
(

exp
(

Elnδx−κ
√

Vlnδx

)
,exp

(
Elnδ r +κ

√
Vlnδ r

))
(6.9)

where for a vector x = (x1, . . . ,xn), exp(x) denotes the vector (exp(x1) , . . . ,exp(xn)).

Computer Experiment 6.7.1. In this experiment, we evaluate the algorithm with added parametrized

estimation of the threshold parameters. In Tab. 6.4 we present all best results for all of 10 runs

of the algorithm, for different values of the κ parameter. Large values of this parameter intro-

duce large tolerance for divergence between measurements and reinforcements resulting from

the transition and reinforcement functions. The smaller the parameter value, the smaller the

threshold, and more measurables are needed to maintain determinateness of the model.

�

There are two remaining issues with this approach. The first one is a high coverage of the

solution space (the term coverage is defined in Experiment 5.5.1). The idea of order estimation,

presented in Sec. 5.6 remains valid, but it does not help with the algorithm evaluating more
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Table 6.4: Results of the algorithm with two-phase ambiguity sample group collection for the

10-dimensional Cart-Pole Swing-Up with a simple reinforcement function problem. Parameters

were set for the following values: GroupCount = 3,NeighbourCount = 5,ρ = 3.

Run # κ Best results Ambiguity Correctness Coverage

1-10 6 () 0 6 0%

1-10 4,5 (c),( j) 0 6 5%

1-10 3 (c),(v,c),(c,h) 0 6 17%

1-10 [0.4,2) (c,a, j),(s,a, j),(s,c,a),(a, j,k),(s,a,k) 0 4 37%

1-10 [0,0.4) (s,c,a,k),(s,a, j,k), . . . 0 6 37%

than a half of possible 3-dimensional combinations. The second, is long processing time: three

hours on the average. To cover a smaller part of the solution space, we run the experiments with

larger values of the NeighbourCount and GroupCount parameters. To significantly reduce the

processing time, we evaluate only a random subset of sample groups in the secondary collection

phase. Reasoning behind this is as follows: Assume for simplicity that if a measurable shatters

(Sec. 4.3) a sample group it produces only two sample groups. Then, if we have GroupCount

sample groups accumulated in the initial collection phase, then after inserting each measurable

we get 2GroupCount sample groups. This will produce 2k×GroupCount sample groups for

k measurables, which tends to be expensive, especially at the beginning of the process, where

many measurables are added accidentally. We propose to process only 2×GroupCount samples

at maximum in the secondary collection phase. Additionally, we do not consider all possible

extensions, but only those with the highest improvement in the value of the ambiguity func-

tional.

Nearest Neighbour problem performance note When using large values of the NeighbourCount

and GroupCount the performance degrades significantly. The solution is to maintain separate

data storage for each evaluated abstraction, and solve the nearest neighbours problem separately

for each of them.

Computer Experiment 6.7.2. We evaluate the version of the the algorithm with the aforemen-

tioned improvements, with larger values of the NeighbourCount and GroupCount parameters

on both versions of the Cart-Pole Swing-Up environment. The results are presented in Tab.

6.5 and 6.6. As expected, higher values of the NeighbourCount and GroupCount parameters
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result in very low solution space coverage for both solved tasks (the term coverage is defined

in Experiment 5.5.1). Lower solution space coverage results in smaller algorithm running time.

However, at the same time, values of the NeighbourCount and GroupCount parameters can not

be too large, because gathering more sample groups with more neighbours increases the running

time. This is especially important in the context of experiments without the use of the simulator

assumption (Sec. 3.2) that will be presented in Chapt. 7, because waiting for the same values of

measurements to reoccur is very time consuming. A simple, intuitive, way to find the satisfac-

tory values of the NeighbourCount and GroupCount parameters is to increase their values and

observe how long does it take for the algorithm to reach two-dimensional or three-dimensional

abstractions. The relation between the number of measurables and the time needed to gather

samples to calculate the ambiguity functional is exponential. Thus, if the time to reach two-

dimensional abstractions is considered long, then waiting for larger abstractions will surely be

unsatisfactory, and the values of the NeighbourCount and GroupCount parameters need to be

smaller.

Table 6.5: Results of the algorithm with performance improvements for the 10-dimensional

Cart-Pole Swing-Up with a simple reinforcement function problem. Parameters were set for

the following values: GroupCount = 20,NeighbourCount = 20,ρ = 3,κ = 1.

Run # Results Ambiguity Correctness Coverage

1 (s,c,a),(c,a, j),(c,a,k) 0 4 1.1%

2 (s,c,a),(c,a, j),(c,a,k) 0 4 1.1%

3 (s,c,a),(c,a, j) 0 4 1.1%

4 (s,c,a),(c,a, j),(c,a,k) 0 4 1.1%

5 (s,c,a),(c,a, j),(c,a,k) 0 4 1.1%

6 (s,c,a),(c,a, j),(c,a,k) 0 4 1.1%

7 (s,c,a),(c,a, j),(c,a,k) 0 4 1.1%

8 (s,c,a),(c,a, j),(c,a,k) 0 4 1.1%

9 (s,c,a),(c,a, j) 0 4 1.1%

10 (s,c,a),(c,a, j),(c,a,k) 0 4 1.1%

�
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Table 6.6: Results of the algorithm with performance improvements for the 10-dimensional

Cart-Pole Swing-Up with a complex reinforcement function problem. Parameters were set for

the following values: GroupCount = 20,NeighbourCount = 20,ρ = 3,κ = 1. All results were

correct, but for brevity we present only the first three from the output.

Run # First three results Ambiguity Correctness Coverage

1 (x,c,a,h,k),(v,c,a,h,k),(c,a,h,k, l) 0 4 2.9%

2 (x,v,c,a, j),(x,c,a,h, j),(v,c,a,h, j) 0 4 4.2%

3 (v,c,a,k, l),(c,a,h,k, l),(x,c,a,h, j) 0 4 2.9%

4 (v,c,a, j, l),(c,a,h, j, l) 0 4 3.5%

5 (x,v,s,c,a),(x,s,c,a,h),(v,s,c,a,h) 0 4 4.5%

6 (x,s,c,h, l),(x,c,a,h, l),(x,c,h, j, l) 0 4 4.8%

7 (v,c,a, j, l) 0 4 3.6%

8 (x,c,a,h,k),(v,c,a,h,k),(c,a,h,k, l) 0 4 2.8%

9 (x,v,c,a, l),(x,c,a,h, l) 0 4 3.9%

10 (x,c,a,h,k),(v,c,a,h,k),(c,a,h,k, l) 0 4 2.9%

6.8 Summary

The proposed algorithm, presented in Listing 9, searches through the space of all possible sub-

sets of all measurables. It aims to narrow down the search using incremental extensions and

reductions. To additionally speed up the calculations, for each set of measurables we eval-

uate all possible extensions and reductions simultaneously (i.e., a set of abstraction paths is

processed in parallel, see Sec. 5.5).

The algorithm depends on the following parameters:

1. resolution parameter ρ (deadband), used for calculating ε , introduced in Sec. 5.4 and

values of vector θ (x) and scalar θ (r), introduced in Sec. 4.2.

2. threshold parameter κ , introduced in Sec. 6.7

3. GroupCount parameter - the number of collected sample groups (defined in (5.3)), intro-

duced in Sec. 6.6

4. NeighbourCount parameter - the number of measurements in each sample group, intro-

duced in Sec. 6.6
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5. MaxFailureCount parameter to determine that when algorithm should stop, introduced in

Sec. 5.4

We employ the following intuition for finding satisfactory values of these parameters. Val-

ues of the NeighbourCount and GroupCount parameters are found in a way described in Ex-

periment 6.7.2: we increase their values step by step for as long, as the algorithm reaches

two-dimensional abstractions in “short” time. We stop, when this time becomes significantly

prolonged. For parameter ρ , we start with a small value (e.g. 0.1) and increase it if the solu-

tion is wrong (i.e., typically, algorithm includes all or almost all measurables). We use small

values of the MaxFailureCount parameter (e.g. 5) if different reinforcement values are easy to

be observed by the algorithm (e.g. in the Cart-Pole Swing-Up environment every movement of

the pole changes the value of the reinforcement) and large (e.g. 20 or 50) when different rein-

forcements are rare (e.g. in the Mountain Car environment, only the target position of the car

induces different reinforcement than the single value observed most of the time). Large values

of the NeighbourCount parameter make possible to use smaller values of the MaxFailureCount

parameter, because waiting for more neighbour samples increases the chance of rare events to

occur.

The experimental results presented in this Chapter support the third sub-thesis, namely that:

the proposed approach, based on the notion of ambiguity correctly solves variable selection

tasks for RL, including tasks with continuous transition and reinforcement functions.

With all sub-theses advocated, we conclude that the main thesis of this work holds:

our ambiguity-based, bottom-up approach is a valid solution of the Reinforcement Learning

variable selection problem
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Algorithm 9 NADA: Neighborhood Ambiguity Driven Abstraction
1: indexSets← /0

2: result← /0

3: while |indexSets|0 do

4: interact with the plant using a random policy

5: collect samples: 〈x(t−1),u(t−1),x(t),r(t)〉

6: accumulate samples into groups (Sections 5.4 and 6.6)

7: if all there are GroupCount groups, with NeighbourCount number of states each then

8: for all I∈ indexSets do

9: estimate A(φI) (see (5.1) or (6.2))

10: if A(φI)> A(φI∪i) for some measurable i then

11: indexSets← indexSets∪ (I∪ i)

12: add samples, which maximize A functional for I to the extension memory col-

lection

13: indexSets← indexSets\ (I)

14: end if

15: if A(φI) = A(φI\i) for some measurable i then

16: if the condition holds also for samples from extension memory collection then

17: indexSets← indexSets∪ (I\ i)

18: indexSets← indexSets\ (I)

19: end if

20: end if

21: if Iwas not extended for MaxFailureCount number of attempts then

22: indexSets← indexSets\ (I)

23: result← result∪I

24: end if

25: end for

26: end if

27: end while
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Chapter 7

Evaluation of the abstraction algorithm

without the simulator assumption

Up to this chapter we have been using a generator whenever some measurements were miss-

ing, to fill a sample group with required number of neighbour points. Having shown that the

approach works when given all required information, in this section we run the algorithm on

a purely random set of transitions. To maintain reasonable running time of the algorithm, we

introduce the following modifications:

1. We ignore the fact that some measurements are missing from a sample group if they

did not occur for large number of Nmax steps, and calculate the values of the ambiguity

functionals using only the information that is currently available.

2. Only the abstractions that could not be extended in MaxFailureCount attempts are con-

sidered a result, regardless of the value of the ambiguity functional.

The first modification is the most important in terms of algorithm’s time complexity: time

needed for similar measurements to occur grows exponentially with the number of dimensions.

Given that also some measurements occur very rarely (e.g. reaching the target spot in Con-

tinuous Labyrinth), it is impractical to wait for all samples when estimating the values of the

ambiguity functional for more than 2 dimensions.

Second modification makes the result dependent on the fact that no measurements were

encountered in which the abstraction can be improved (in terms of transition function or rein-

forcement functions determinateness) instead of the value of the ambiguity functional. Because

of the first modification, estimated values of the ambiguity functional are less reliable in terms
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of comparing the abstractions in context of the whole space of measurables.

We set the parameters according to the intuition presented in Sec. 6.8, but use larger val-

ues of the MaxFailureCount parameter due to the first modification presented above, which

decreases the accuracy of estimation of the ambiguity functional.

7.1 Results for a deterministic, discrete domain

Computer Experiment 7.1.1. First, we test the proposed algorithm on the enhanced version

of the Discrete Labyrinth. The enhancement consists of making the labyrinth larger, namely we

consider a grid with 500×500 cells, which gives a domain with 250000 measurements, instead

of 100. The results are presented in Tab. 7.1. The GroupCount parameter was set to 100 so it

was possible to gather samples with situations in which the agent hits the wall, or collects the

reward. Alternatively, large value of the MaxFailureCount could have been used. Each run took

about two hours, on average.

Table 7.1: Results of the approximate algorithm on the 7-dimensional, 500 × 500 Dis-

crete Labyrinth problem. Parameters were set for the following values: GroupCount =

100,NeighbourCount = 10,ρ = 0.1,MaxFailureCount = 10, Nmax = 1000.

Run # Example decision sequence Results Ambiguity Correctness Coverage

1 +y,+s (y,s),(x,s) 0 4 3.7%

2 +x,+s (x,s),(x,y) 0 4 2.8%

3 +s,+x (x,s),(x,y) 0 4 3.8%

4 +x,+s (x,s),(x,y) 0 4 2.2%

5 +x,+s (x,s),(x,y) 0 4 2.9%

6 +x,+s (x,s),(x,y) 0 4 2.9%

7 +x,+s (x,s),(x,y) 0 4 2.2%

8 +x,+s (x,s),(x,y) 0 4 2.5%

9 +x,+s (x,s),(x,y) 0 4 2.5%

10 +x,+s (x,s),(x,y) 0 4 2.4%

�
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7.2 Results for stochastic, discrete domain

In this section we additionally evaluate the proposed algorithm on a stochastic domain, namely

the Coffee Task environment. The main difficulty in this task stems from the fact that the tran-

sition function is not deterministic. The results are presented in Tab. 7.2. The values of the

GroupCount and NeighbourCount were significantly increased to take into account many pos-

sible outcomes of the transition and reinforcement functions, even for a correct model. In case

of such an environment the ambiguity functional will never be 0, however it reaches the lowest

possible value only for correct solutions. That is why all final abstractions have ambiguity equal

to 3. Each measurement in the best possible abstraction can have 4 possible outcomes - regard-

less of the chosen action it may fail or not, giving two possible values of some measurable and

it may start raining or not, regardless of the chosen action or any other measurable, which gives

also two possible values of another measurable. Two possible values of two binary measur-

ables give 4 possible combinations, and taking into account the −1 term from (5.1) we get the

minimal ambiguity functional equal to 3. The reason why the algorithm is still able to find the

correct abstractions is that for some points in the space of measurables some measurables are

still relevant on the average. For example, without the umbrella the robot sometimes gets wet,

and sometimes not. But if the robot takes the umbrella, it will never become wet, regardless if

the action GO will succeed or fail, and regardless of if it is raining or not. The knowledge about

having the umbrella makes the transition function less ambiguous.

7.3 Results for continuous domains

Computer Experiment 7.3.1. The algorithm presented in Listing 9, along with modifications

presented at the beginning of this chapter, was evaluated for continuous domains, namely the

Continuous Labyrinth domain, both versions of the Cart-Pole Swing-Up domain, both versions

of the Mountain Car domain and the Pinball domain. The results are presented in Tables 7.3,

7.4, 7.5, 7.6 and 7.8 respectively.

The results for the Continuous Labyrinth are presented in Tab. 7.3. The simplicity of this

domain allows to reach correct results even for the resolution parameter ρ as small as 0.1. When

ρ < 1 chances of measurements reoccurring are greatly improved, which significantly reduces

the running time. Always the same, correct solution had the lowest value of the ambiguity

functional. The decision sequence was always that first the coordinates (two of measurables
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Table 7.2: Results for the Coffee Task problem. Parameter were set to the following values:

GroupCount = 50,NeighbourCount = 30, Nmax = 1000.

Run # Decision sequence Result Ambiguity Correctness Coverage

1 +SW, +SL, +SC, +SU, +SR SC,SR,SU,SL,SW 3 4 22%

2 +SW, +SL, +SU, +SC, +SR SC,SR,SU,SL,SW 3 4 13%

3 +SL, +SW, +SU, +SC, +SR SC,SR,SU,SL,SW 3 4 22%

4 +SL, +SW, +SC, +S9, +SR SC,SR,SL,SW,S9 3 4 19%

5 +SL, +SW, +SU, +SC, +SR SC,SR,SU,SL,SW 3 4 20%

6 +SL, +SW, +SC, +SU, +SR SC,SR,SU,SL,SW 3 4 17%

7 +SL, +SW, +S9, +SC, +SR SC,SR,SL,SW,S9 3 4 16%

8 +SL, +SC, +SL, +S9, +SR SC,SR,SL,SW,S9 3 4 14%

9 +SL, +SC, +SW, +SU, +SR SC,SR,SU,SL,SW 3 4 17%

10 +SL, +SW, +SC, +S9, +SR SC,SR,SL,SW,S9 3 4 10%

x, y, s, d and m, qx, qy) were added - to correctly predict reaching the rewarded square, or

hitting the wall. Then, the algorithm added the velocity coordinates, to improve prediction of

the values of coordinates. In the lists with final abstractions, some abstractions with only one

velocity measurable were present in most runs - however they always had significantly larger

values of the ambiguity functional. The average computation time for each run was under one

minute.

The results for the Cart-Pole Swing-Up with a simple reinforcement function, shown in

Tab. 7.4, also demonstrate the correct behaviour of the algorithm. Setting ρ as small as in the

case of the Continuous Labyrinth yields incorrect results - because such resolution makes the

effect of the angular velocity unobservable. As a compromise between accuracy and running

time, we chose ρ = 1. The results are presented in the Tab. 7.4. In all runs, the insertion of

the angular velocity measurable a is always preceded by one or two angular measurables (s,

c j, or k). This is because a is not related with the reinforcement values. After inserting the

angular measurables, the angular velocity is then required to correctly predict the behaviour of

the pole’s angle, hence the algorithm correctly inserts this measurable. The simulations took

about 8 hours, on average, for each run.

Table 7.5 presents the results for the Cart-Pole Swing-Up with a complex reinforcement

function. In case of this domain, the value of the ρ parameter was set to 0.2. It is much
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lower than in the experiment with a simple reinforcement function, even though this domain

is more complex. The reason for this is that the ambiguous measurements are more likely to

be observed, because of the nonlinear behaviour near the cart’s boundaries. The penalty for

hitting the bound is received by the agent when the cart or the pole hit the boundary and this

makes the measurables responsible for cart’s position and pole’s angle easy to be identified

as nonredunant. After the position and pole measurables were added, the algorithm correctly

includes the velocity and the angular velocity, respectively. The average processing time for

each run was about 20 hours.

In Tabs. 7.6, 7.7 we present results for the simple Mountain Car and the stochastic Mountain

Car environments, respectively. In both cases, in each run, a correct set of observables was

determined. Because this domain is simple in terms of the number of underlying state variables

(two: car’s position and its velocity), we test the algorithm against the largest number of given

observables, namely twenty. The main difficulty in this environment is that the agent receives

constant reinforcement most of the time and the only event that makes a difference is reaching

the goal, which does not happen often. Also, in the stochastic version the transition function

is not deterministic. Because of that the number of neighbours in sample groups was increased

to 100 and the MaxFailureCount parameter was set to 20 and 30 for the simple and stochastic

versions, respectively. With these settings the algorithm had the chance to observe different

values of the reinforcement function before concluding that its constant and no observations

are needed, and the stochastic effects of the transition functions could be averaged. Note that

the algorithm consistently avoids ambiguous variables like F9 = x2 or F10 = v2 (Sec. 2.5). The

simulations for each run took about twenty minutes for the simple version, and about eight

hours for the stochastic version, on average.

The results for the Pinball environment are shown in Tab. 7.8. As in other experiments, in

all runs the algorithm returned a correct result, that contains all necessary information about the

agent, i.e. its two-dimensional position and two-dimensional velocity. Note that the algorithm

always starts with inserting position-related observables related, as the reinforcement functions

directly depends only on agent’s position. Only after determining that the position is needed to

make reinforcement values deterministic, velocity-related observables are inserted. Simulation

time was two hours for each run, on average.

�
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Table 7.3: Results of the approximate algorithm on the 9-dimensional Continuous Labyrinth

problem. Parameters were set for the following values: GroupCount = 10,NeighbourCount =

5,ρ = 0.1,MaxFailureCount = 5, Nmax = 200000.

Run # Decision sequence Result Correctness Coverage

1 +x,+y,+vx,+vy (x,y,vx,vy) 4 12%

2 +y,+qx,+x,−qx,+vy,+vx (x,y,vx,vy) 4 15%

3 +y,+x,+vx,+vy (x,y,vx,vy) 4 14%

4 +x,+y,+vx,+qx,+vy,−qx (x,y,vx,vy) 4 12%

5 +qx,+y,+x,−qx,+vx,+vy (x,y,vx,vy) 4 13%

6 +x,+y,+vx,+vy (x,y,vx,vy) 4 11%

7 +x,+qy,+vx,+y,−qy,+vy (x,y,vx,vy) 4 13%

8 +y,+x,+vy,+vx (x,y,vx,vy) 4 11%

9 +y,+x,+vx,+vy (x,y,vx,vy) 4 13%

10 +x,+y,+vx,+vy (x,y,vx,vy) 4 12%

7.3.1 Results for an alternative version of the Λ function

In this section we present an alternative method of calculating the ambiguity functional for

continuous transition and reinforcement functions.

7.4 Distance-based ambiguity functional for continuous tran-

sition and reinforcement functions

Instead of saying that abstract state’s ambiguity depends on the number of next abstract states

reached with the same action (as in Sec. 6.1), we measure how far from each other these

next abstract states are. To additionally take into account the expansion factor of the transition

function, we do not want to interpret small divergence between next states and reinforcements as

an ambiguity. Thus, for every measurable, every distance smaller than the appropriate threshold

vector value is reset to 0. For simplicity, let us denote a concatenation of the threshold vector

θ (x) with the single element θ (r) with just θ :

θ = (θ (x),θ (r))
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Table 7.4: Results of the approximate algorithm on the 10-dimensional Cart-Pole Swing-Up

problem with a simple reinforcement function. Parameters were set for the following val-

ues: GroupCount = 5,NeighbourCount = 10,ρ = 1,κ = 0.3,MaxFailureCount = 20, Nmax =

200000.

Run # Decision sequence Results Correctness Coverage

1 +s, +c, +a (s,c,a) 4 1.0%

2 +j, +c, +a (c,a, j) 4 1.1%

3 +s, +c, +a (s,c,a) 4 1.8%

4 +j, +a, +c (c,a, j) 4 2.7%

5 +c, +k, +i, -k, -i, +s, +a (s,c,a) 4 2.8%

6 +j, +a, +c (c,a, j) 4 1.7%

7 +c, +a, +i, -a, +s, -i, +a (s,c,a) 4 1.1%

8 +s, +c, +a (s,c,a) 4 2.7%

9 +v, +c, -v, +s, +a (s,c,a) 4 1.1%

10 +k, +c, +s, -k, +a (s,c,a) 4 1.7%

Then we can apply the threshold to the distance calculation using the indicator function:

∆θ ((x̂1,r1),(x̂2,r2))i = 1[0,θi](|(x̂
1,r1)− (x̂2,r2)|i) (7.1)

where 1[0,θi] is the indicator function of the given interval.

Evaluation of this vector into a single quantity is possible with numerous ways, Euclidean

distance being the simplest. However, as in the discrete version (see (5.1)) we want to account

for the worst case in terms of ambiguity. Therefore we propose to use the Chebyshev distance

(L∞ norm, denoted here by ‖·‖max):

Λ(X̂t+1) = max
(x̂1,r1),(x̂2,r2)∈X̂t+1

‖∆θ ((x̂1,r1),(x̂2,r2))‖max (7.2)

Similarly to the previous version of the continuous ambiguity functional, defined in (6.2), this

version shares the properties defined in (2), if we interpret an abstract state to be the more

ambiguous the further apart its outcomes are. Unambiguous abstract state will yield only one

element in the X̂t+1 set, and thus will yield 0, the lowest possible value of Λ.

Evaluation of this idea is presented for the Cart-Pole Swing-Up task, for both versions of

the reinforcement function. The results are presented in Tab. 7.9 and the Tab. 7.10.
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Table 7.5: Results of the approximate algorithm on the 10-dimensional Cart-Pole Swing-

Up with a complex reinforcement function. Parameters were set for the following values:

GroupCount = 50,NeighbourCount = 50,ρ = 0.2,κ = 0.3,MaxFailureCount = 5, Nmax =

200000.

Run # Decision sequence Result Correctness Coverage

1 +s,+i,+k,+l,+h,+x,−i (x,s,h,k, l) 4 2.0%

2 +s,+c,+h,+l,+x (x,s,c,h, l) 4 2.5%

3 +k,+s,+h,+x,+a (x,s,a,h,k) 4 4.7%

4 +k,+s,+i,−k,+l,+x,+h,−i,−s,+s,+c (x,s,c,h, l) 4 7.0%

5 +k,+s,+ j,−k,+x,+h,+l (x,s,h, j, l) 4 7.9%

6 +s,+ j,+i,−s,− j,+k,+l,+h,−i,+x,+ j (x,h, j,k, l) 4 4.5%

7 +s,+ j,+k,+h,+l,−s,+x (x,h, j,k, l) 4 1.3%

8 +k,+s,+ j,−k,+x,+h,+l (x,s,h, j, l) 4 7.9%

9 +s,+c,+h,+x,+a (x,s,c,a,h) 4 2.5%

10 +k,+s,+h,−k,+l,+x,+ j (x,s,h, j, l) 4 4.7%

Table 7.6: Results of the approximate algorithm on the 20-dimensional simple Mountain Car

problem. Parameters were set for the following values: GroupCount = 10,NeighbourCount =

100,ρ = 3,κ = 3,MaxFailureCount = 20, Nmax = 1000.

Run # Decision sequence Result Correctness Coverage

1 +F16,+F17 (F16,F17) 4 0.01%

2 +F7,+F20 (F7,F20) 4 0.01%

3 +F20,+F16 (F20,F16) 4 0.01%

4 +F20,+F17 (F17,F20) 4 0.01%

5 +F16,+F8 (F8,F16) 4 0.01%

6 +F16,+F7 (F7,F16) 4 0.01%

7 +F15,+F20 (F15,F20) 4 0.01%

8 +F16,+F15 (F15,F16) 4 0.01%

9 +F14,+F17 (F14,F17) 4 0.01%

10 +F20,+F7 (F7,F20) 4 0.01%
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Table 7.7: Results of the approximate algorithm on the 20-dimensional stochastic Mountain Car

problem. Parameters were set for the following values: GroupCount = 10,NeighbourCount =

100,ρ = 3,κ = 3,MaxFailureCount = 30, Nmax = 1000.

Run # Decision sequence Result Correctness Coverage

1 +F15,+F16 (F15,F16) 4 0.01%

2 +F17,+F16 (F16,F17) 4 0.01%

3 +F15,+F16 (F15,F16) 4 0.01%

4 +F15,+F14 (F14,F15) 4 0.01%

5 +F15,+F16 (F15,F16) 4 0.01%

6 +F17,+F20 (F17,F20) 4 0.01%

7 +F15,+F14 (F14,F15) 4 0.01%

8 +F15,+F16 (F15,F16) 4 0.01%

9 +F16,+F15 (F15,F16) 4 0.01%

10 +F16,+F15 (F15,F16) 4 0.01%

Table 7.8: Results of the approximate algorithm on the 10-dimensional Pinball problem. Param-

eters were set for the following values: GroupCount = 10,NeighbourCount = 100,ρ = 3,κ =

4.5,MaxFailureCount = 10, Nmax = 1000.

Run # Decision sequence Result Correctness Coverage

1 +y,+x,+vy,+F9 (x,y,vy,F9) 4 2.5%

2 +x,+y,+F10,+vx (x,y,vx,F10) 4 3.9%

3 +y,+F5,+F10,+x,−F5,+vx (x,y,vx,F10) 4 4.2%

4 +F5,+x,+F6,−F5,+y,−F6,+vx,−vx,+vy, (x,y,vx,F10) 4 4.3%

−vy,+F10,+vx

5 +F5,+y,+vx,+x,−y,+y,−F5,−vx,+F8, (x,y,vx,F8) 4 3.6%

−F8,+vy,+F8

6 +F6,+vy,+x,+vx (x,vx,vy,F6) 4 6.2%

7 +x,+y,F8,+vx (x,y,vx,F8) 4 6.8%

8 +F6,+vx,+F10,+x (x,vx,F6,F10) 4 4.5%

9 +F6,+x,+F9,+F10,−F9,+vx,−x,+x (x,vx,F6,F10) 4 3.2%

10 +F5,+x,+y,+vy,−F5,+F5,−vy,+vy (x,y,vy,F5) 4 2.2%
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Table 7.9: Results for the Cart-Pole Swing-Up problem with simple reinforcement func-

tion, with distance-based ambiguity calculation. Parameter were set to the following values:

GroupCount = 5,NeighbourCount = 3, Nmax = 1000.

Run # Decision sequence Result Ambiguity Correctness Coverage

1 +j, +a, +c c, a, j 0 4 25%

2 +s, +j, +a s, a, j 0 4 29%

3 +s, +c, +a s, c, a 0 4 26%

4 +j, +c, +a c, a, j 0 4 29%

5 +a, +j, +s s, a, j 0 4 27%

6 +s, +j, +a s, a, j 0 4 27%

7 +c, +j, +v, +a, -v c, a, j 0 4 25%

8 +c, +j, +a c, a, j 0 4 26%

9 +s, +a, +c s, c, a 0 4 28%

10 +c, +a, +j c, a, j 0 4 25%

Table 7.10: Results for the Cart-Pole Swing-Up problem a complex reinforcement func-

tion, with distance-based ambiguity calculation. Parameter were set to the following values:

GroupCount = 5,NeighbourCount = 3, Nmax = 1000.

Run # Decision sequence Result Ambiguity Correctness Coverage

1 +s, +j, +a, -j, +h, +j, +v v, s, a, h, j 0.00783 4 33%

2 +a, +s, +h, +v, +j v, s, a, h, j 0.00399 4 26%

3 +j, +l, +s, -j, +x, +h, +j x, s, h, j, l 0.00000 4 25%

4 +c, +j, +a, -c, +x, +h, +s x, s, a, h, j 0.01009 4 25%

5 +a, +j, +s, +x, +v x, v, s, a, j 0.01618 4 33%

6 +j, +c, +l, +x, +v x, v, c, j, l 0.00398 4 31%

7 +h, +v, +j, +l, +c v, c, h, j, l 0.00820 4 26%

8 +h, +v, +s, +j, +l v, s, h, j, l 0.00554 4 25%

9 +c, +a, +j, +x, +h x, c, a, h, j 0.00000 4 25%

10 +l, +s, +h, +j, -s, +v, +c v, c, h, j, l 0.00414 4 27%
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Chapter 8

Conclusion

8.1 Summary of thesis

In this work we analyzed the state abstraction by variable selection problem in the context of

Reinforcement Learning (RL). After the introduction in Chapt. 1, in Chapt. 2 we presented

testing environments, used throughout this thesis in examples and experiments, namely the

Discrete Labyrinth, Coffee Task, Continuous Labyrinth, Cart-Pole Swing-Up (with simple and

complex reinforcement functions), Mountain Car (simple and stochastic versions) and Pinball.

In Chapt. 3 we put forward basic notions and definitions, on which the main idea of this work

is founded. In Sec. 3.7 we summarized the existing work on state abstraction in RL.

In Sec. 4.3 of Chapt. 4 we showed proof of the first sub-thesis of this work formulated in

Chapt. 1, namely that state abstraction by variable selection problem is NP-hard and inapprox-

imable. This fact legitimizes devising a heuristic algorithm.

In the following Sec. 4.4 we combined the results of the analysis of the existing work on

bisimulation in RL (Sec. 4.2) with the introduced notion of ambiguity, inspired by behavioral

psychology, to propose the ambiguity functional as a way of assessing and comparing quality

of state abstraction functions. Next, in Sec. 4.5, two general incremental paradigms, namely

the bottom-up approach and the top-down approach were compared theoretically to show that

without having any knowledge about the problem being solved the bottom-up approach is better

on average. We argue that this result advocates focusing on the bottom-up approach in our

algorithm, even though occasionally it makes top-down steps.

After analyzing our algorithm in the context of discrete environments in Chapt. 5, we ex-

tended the proposed framework to the continuous case in Chapt. 6. Estimating the values
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of the ambiguity functional in the continuous case involves solving a new type of the near-

est neighbour problem, which we call the multispace nearest neighbour problem. In Sec. 6.3

we analyzed this problem and presented a solution, which improves our state abstraction al-

gorithm’s computational complexity. This led to the formulation of our algorithm, namely the

NADA (Neighborhood Ambiguity Driven Abstraction) algorithm in Sec. 6.8.

Successive examples and experiments presented in subsequent sections of Chapters 4, 5

and 6 support the second sub-thesis introduced in Chapt. 1, which claims that the introduced

ambiguity functional correctly reflects validity and quality of the abstraction function. These

results were obtained in the context of the simulator assumption (Sec. 3.2), where data samples

can be generated on demand, using the knowledge about the internals of the considered testing

environment.

Knowing that our algorithm works when given all required data, we examined the proposed

approach in a practical scenario, when the algorithm receives only a random set of trajecto-

ries. Practical issues with using the ambiguity functional in this scenario were analyzed and a

set of heuristics to address them were proposed. The evaluation of our algorithm without the

simulator assumption in Chapt. 7 shows that the algorithm works reliably for all of the testing

environments. This advocates the last sub-thesis, namely that the proposed approach is feasible

for solving variable selection tasks in RL. Experimental results demonstrate improvement, re-

garding other works in state abstraction in RL, in terms of number of states (in case of discrete

domains) and number of measurables (in case of continuous domains) in the context of state-

of-the-art research regarding the state abstraction problem. The comparison with other works

was presented in Sec. 3.7. Experimental results for the continuous environments are the first

known the the author.

The three sub-theses formulated in Chapt. 1, through the presented derivations and experi-

mental results, support the main thesis of this work, namely that our ambiguity-based, bottom-

up approach is a valid solution of the Reinforcement Learning variable selection problem.

8.2 Critical overview

The main problem of the presented algorithm stems from the fact that to estimate the inverse

images of abstraction functions the algorithm needs to wait for reoccurring events (values of the

vector of measurables). For abstractions with more than 3 measurables, in case of continuous
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tasks, this can take a long time (e.g. 20 hours in case of the Cart-Pole Swing-Up with complex

reinforcement function, Sec. 7.3.1). To make the running time shorter, we estimate the value

of the ambiguity functional with incomplete samples groups, as presented in Chapt. 7. The

results for such an approximate solution look promising, however they were obtained only for

problems with up to twenty measurables, with five-dimensional solution at most. On the other

hand, interestingly, this is somehow related to the psychological mechanisms that inspired this

work. Some experiments related to humans’ ability to make classification “judgments” based

on “multidimensional stimuli” show that the accuracy of such judgments significantly drops

even for two dimensions [81], [26]. Such psychological experiments were carried out for no

more than six dimensions. While this is not directly related to the stimulus discrimination prob-

lem [102], the inability to make accurate classification assessments for more than two stimuli

suggests that deciding which of these stimuli is more important than others would also be hard.

The conclusion of the reasoning in Sec. 4.5 in Chapt. 4 was that the bottom-up approach

on average is better, and thus the designed state abstraction approach should work according to

this paradigm. However, further investigations (namely, Experiment 5.4.1 in Sec. 5.4 in Chapt.

5) have shown that to reach the optimal solution, sometimes some measurables need to be

removed from the abstraction and removing measurables from the solution is a top-down step.

This makes the proposed solution, in fact, a mixed paradigm solution, i.e. one that is partially

bottom-up and partially top-down. This in turn puts to question whether it would not be better

to investigate mixed paradigms further, not attaching too much importance on the superiority of

the bottom-up paradigm.

Another issue with the presented analysis is that the parameters of our algorithm were either

known from using transitions generated on demand (the simulator assumption, Sec. 3.2) or

found using the knowledge of what is the correct solution (e.g. smallest ρ parameters values

that have yielded results known to be correct). In a real-work scenario we do not know the

solution beforehand, and even though for some problems numerical simulators exist [120], this

is not always the case. Thus, the real-world scenario would involve guessing the values of

the parameters, finding an abstraction with our algorithm, and then running a RL algorithm

to determine quality of a learned policy. This would significantly prolong computation time,

which now can take even 20 hours, for complex environments (see results for Cart-Pole Swing-

Up with complex reinforcement function in Sec. 7.3.1).
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8.3 Future work

The most important drawback of the algorithm - waiting for reoccurring events, is the first op-

portunity for the follow-up research. Reliable estimator for the ambiguity functional that could

work for a given set of independent trajectories, without the need to wait for some particular

observations to occur, would greatly improve performance of the algorithm.

Another interesting direction for the future research is investigating an application of this

algorithm for calculating other types of abstractions, most notably the φQ∗ type. Abstractions

of this type aggregate more measurements than φmodel abstractions, thus simplify the task more,

potentially improving RL algorithm performance significantly. This type of abstraction is also

more popular in the RL community (as can be seen in related work lists in Sec. 3.7). The main

idea behind this approach is to treat Bellman’s equation as a model that has to be preserved

by a φmodel abstraction, with values of the Q-function estimator treated as states. This way, an

abstraction algorithm working to determine a φmodel abstraction for an “imaginary” plant would

in fact discover the φQ∗ abstraction for the underlying domain.

Additionally, the presented approach should be easy to extend for selecting sufficient and

non-redundant action vector’s elements for the continuous action space case (U∈Rp for some

p).

Determining the values of the algorithm’s parameters also requires further investigation. For

example, the algorithm could be automatically run many times, starting with low accuracy (large

values of parameter ρ) and increasing it if needed, similarly to multi-resolution approaches like

the one presented in [87]. The value of parameter κ could also be determined automatically.

Sufficiently large value of this parameter always makes the algorithm to yield a null abstraction.

Decreasing value of κ automatically, for subsequent runs of the same experiment would lead to

a non-null abstraction eventually.
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Appendix A

Technical details

The solution was mainly implemented on Microsoft Windows 7 system, within the .NET Frame-

work 4.5, using the C# language and the dotRL platform [93]. The sample data was stored si-

multaneously using a MySQL 5.6 database [118] in MyISAM tables and in RAM. The database

was used for solving the Nearest Neighbour problem using the approach presented in Sec. 6.3.

For performance reasons, the results from the database were retrieved only as sample identifiers

and appropriate samples were read from the redundant RAM storage. Smaller experiments and

examples were calculated/generated using scripts written in Python 2.7 [98]. Most machines

used for calculations where equipped with Intel R© CoreTM i5 Processors (with two examples

running on Intel R© CoreTM i7), at least 4GB of RAM memory (with two examples equipped

with 16GB) and at least 0.5GB of additional disk space for sample database storage.

The main idea of this work is represented by the AmbiguityCalculator interface with

three implementations, presented in Fig. A.1, namely: DiscreteAmbiguityCalculator - im-

plementing the method of calculating the discrete version of the ambiguity functional, accord-

ing to (5.1), NeighbourhoodContinuousAmbiguityCalculator - implementing the method

of calculating the continuous version of the ambiguity functional, according to (6.2) and Dis-

tanceContinuousAmbiguityCalculator - implementing the alternative method of calculat-

ing the continuous version of the ambiguity functional, according to (7.2). They directly relate

to the three presented ways of calculating the ambiguity functional in Chapters 5.1, 6.1 and 7

resp. Values calculated by these classes are in turn used by the AbstractionEvaluator. It

uses two classes: ExtensionCalculator and ReductionCalculator, which execute exten-

sion and reduction steps resp. as described in Sec. 6.8. The ReductionCalculator addition-

ally uses the DimensionGuard class, which represents the extension memory concept and is
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responsible for preventing cycles in abstraction paths. This is done as described in Sec. 5.5.

Figure A.3 presents VectorTransitionService class, which orchestrates all operations

related to observed transitions and reinforcements, like storage and calculating the resolution

parameter ρ presented in Sec. 5.4 and threshold parameters θ (x) and θ (r) presented in Sec. 6.4

using classes EpsilonEstimator and LogThresholdEstimator resp. It realizes the top-level

domain service class, according to the principles presented by Evans in [28].

The main notions are modelled by entities presented in Fig. A.2. The VectorTransition

and MarkovTransition classes represent a pair of vectors xt , xt+1 and scalars ut and rt+1 in

a general, and RL context resp. Ambiguity samples and groups of samples are represented by

AmbiguitySample and AmbiguitySampleMatch classes resp. Classes Ambiguity, Ambigui-

tyRatio represent the core notions of this work: the ambiguity being the value of the ambiguity

functional.

The Fig. A.4 presents additional helper classes that implement sets of measurables that

constitute an abstraction function, and finer/coarser relations between abstractions presented in

(3.6) and described in Sec. 3.3. Classes ActionSubspace, CoreSubspace and Reinforce-

mentSubspace are aliases that give particular meaning for some sets of measurables - an action

subspace is a group of indices in the transition vector that hold the action chosen by the control

policy, the core subspace is the set of measurables in the current abstraction function and the re-

inforcement subspace is the index in the transition vector that contains reinforcement value. In

the context of this work action subspace and reinforcement subspace are always 1-dimensional.

The AmbiguitySpace class represents a pair of index sets:

• source index set is a set of indices from the transition vector used to group samples to-

gether (in this work it contains indices from the action subspace and core subspace -

because state and action uniquely define an event in the system)

• target index set is a set of indices from the transition vector that represnt an outcome of

RL policy step, and are used to calculate the ambiguity functional (in this work it contains

indices from the core subspace and the reinforcement subspace - because the next state

and received reinforcement define an outcome of a policy’s step)

There are also numerous data structures for handling the storage of samples. This is due to the

necessity of optimizing the nearest neighbour queries for different projections, as described in

Sec. 6.3.
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